![八年级数学北师大版下册 第一章 三角形的证明 4 角平分线 课时1 角平分线的性质与判定第1页](http://www.enxinlong.com/img-preview/2/3/5907285/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:北师大版八年级数学下册课件PPT+教案+单元期中期末卷
初中数学北师大版八年级下册4 角平分线优质教学设计
展开
这是一份初中数学北师大版八年级下册4 角平分线优质教学设计,共3页。教案主要包含了教学说明,归纳结论等内容,欢迎下载使用。
第一章 三角形的证明4 角平分线课时1 角平分线的性质与判定1.会证明角平分线的性质定理及其逆定理.2.经历探索、猜测、证明的过程,进一步提高学生的推理证明意识和能力.体验解决问题的方法,发展实践能力和创新意识.3.经历探索、猜想、证明使学生掌握研究解决问题的方法.正确地表述角平分线性质定理的逆命题及其证明.正确地表述角平分线性质定理的逆命题及其证明.让学生到黑板上画出他们收集到的日常生活中应用角平分线的例子,并分别说出它们的作用.【教学说明】高度评价学生的参与热情和学习成果,激励学生继续努力.尤其是对于其中很有创意的发现,可以以该学生名字命名,以此鼓励.提高学生的积极性.探究1:角平分线定理已知:如图,OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为D、E.求证:PD=PE.证明:∵∠1=∠2,OP=OP,∠PDO=∠PEO=90°,∴△PDO≌△PEO(AAS).∴PD=PE(全等三角形的对应边相等).【教学说明】请同学们自己尝试着证明上述结论,然后在全班进行交流.教师在教学过程中对有困难的学生要给予指导.【归纳结论】角平分线上的点到这个角两边的距离相等. 探究2:角平分线的判定定理.已知:在∠AOB内部有一点P,且PD⊥OA,PE⊥OB,D、E为垂足且PD=PE.求证:点P在∠AOB的角平分线上.证明:∴PD⊥OA,PE⊥OB,∴∠PDO=∠ PEO=90°.在Rt△ODP和Rt△OEP中,OP=OP,PD=PE,∴Rt△ODP ≌Rt△OEP(HL定理).∴∠1=∠2(全等三角形对应角相等).∴点P在∠AOB的角平分线上.【归纳结论】在一个角的内部,到角的两边距离相等的点在这个角的角平分线上.例1.如图,已知:∠C=90°,DE是AB的垂直平分线,D为垂足,交BC于E,AB=2AC. 求证:CE=DE. 证明:连接AE,由于∠C=90°,AB=2AC,∴∠B=30°,∠CAB=60°.∵DE是AB的垂直平分线,∴AE=BE,∴∠EAB=∠B=30°,∴∠CAE=60°-30°=30°,即AE是∠CAB的角平分线,∴CE=DE. 例2.如图,已知:E是∠AOB的平分线上的一点,且EC⊥OA,ED⊥OB,垂足分别是C、D. 求证:OE垂直平分CD. 证明:∵OE是∠AOB的平分线,∴CE=DE,∴Rt△OCE≌Rt△ODE,∴OC=OD,∴O与E都在CD的垂直平分线上,∴OE垂直平分CD. 例3.如图,已知:在△ABC中,∠BAC的平分线交BC于D,且DE⊥AB,DF⊥AC,垂足分别是E、F. 求证:AD是EF的垂直平分线. 证明:∵AD是∠BAC的平分线,且DE⊥AB,DF⊥AC,∴DE=DF,∴Rt△ADE≌Rt△ADF,∴AE=AF,∴A与D都在EF的垂直平分线上,∴AD就是EF的垂直平分线. 【教学说明】综合利用角平分线的性质和判定直角三角形.垂直平分线的相关性质解决问题.进一步发展学生的推论证明能力.在学生独立完成推理过程的基础上,教师要给出书写示范.本节课应掌握:1.角平分线上的点到这个角两边的距离相等..2.在一个角的内部,到角的两边距离相等的点在这个角的角平分线上. 教材“习题1.9”中第2、3 题.
相关教案
这是一份初中数学湘教版八年级下册1.4 角平分线的性质第1课时教案,共4页。教案主要包含了知识回顾,探究交流,知识应用,巩固练习,课堂小结,作业等内容,欢迎下载使用。
这是一份初中数学北师大版八年级下册4 角平分线第1课时教学设计及反思,共3页。教案主要包含了知识与技能,过程与方法,情感、态度与价值观,教学重点,教学难点等内容,欢迎下载使用。
这是一份2020-2021学年12.3 角的平分线的性质第1课时教案设计,共2页。教案主要包含了情境导入,合作探究,板书设计等内容,欢迎下载使用。
![英语朗读宝](http://www.enxinlong.com/img/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)