开学活动
搜索
    上传资料 赚现金

    高考数学一轮复习总教案:9.2 双曲线

    高考数学一轮复习总教案:9.2 双曲线第1页
    还剩2页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高考数学一轮复习总教案:9.2 双曲线

    展开

    这是一份高考数学一轮复习总教案:9.2 双曲线,共3页。教案主要包含了变式训练1,变式训练2,变式训练3等内容,欢迎下载使用。
    9.2 双曲线  典例精析题型一 双曲线的定义与标准方程【例1】已知动圆E与圆A(x4)2y22外切,与圆B(x4)2y22内切,求动圆圆心E的轨迹方程.【解析】设动圆E的半径为r,则由已知|AE|r|BE|r所以|AE||BE|2,又A(4,0)B(4,0),所以|AB|8,2|AB|.根据双曲线定义知,点E的轨迹是以AB为焦点的双曲线的右支.因为ac4,所以b2c2a214故点E的轨迹方程是1(x≥).【点拨】利用两圆内、外切圆心距与两圆半径的关系找出E点满足的几何条件,结合双曲线定义求解,要特别注意轨迹是否为双曲线的两支.【变式训练1P为双曲线1的右支上一点,MN分别是圆(x5)2y24(x5)2y21上的点,则|PM||PN|的最大值为(  )A.6    B.7    C.8     D.9【解析】选D.题型二 双曲线几何性质的运用【例2】双曲线C1(a0b0)的右顶点为Ax轴上有一点Q(2a,0),若C上存在一点P,使0,求此双曲线离心率的取值范围.【解析】设P(xy),则由0,得APPQ,则P在以AQ为直径的圆上,(x)2y2()2P在双曲线上,得1①②消去y,得(a2b2)x23a3x2a4a2b20[(a2b2)x(2a3ab2)](xa)0xa时,PA重合,不符合题意,舍去;x时,满足题意的点P存在,需xa化简得a22b2,即3a22c2所以离心率的取值范围是(1).【点拨】根据双曲线上的点的范围或者焦半径的最小值建立不等式,是求离心率的取值范围的常用方法.【变式训练2】设离心率为e的双曲线C1(a0b0)的右焦点为F,直线l过焦点F,且斜率为k,则直线l与双曲线C的左、右两支都相交的充要条件是(  )A.k2e21        B.k2e21C.e2k21        D.e2k21【解析】由双曲线的图象和渐近线的几何意义,可知直线的斜率k只需满足-k,即k2e21,故选C.[来源:www.shulihua.net]题型三 有关双曲线的综合问题【例3(2013广东模拟)已知双曲线y21的左、右顶点分别为A1A2,点P(x1y1)Q(x1,-y1)是双曲线上不同的两个动点.(1)求直线A1PA2Q交点的轨迹E的方程;(2)若过点H(0h)(h1)的两条直线l1l2与轨迹E都只有一个交点,且l1l2,求h的值.【解析】(1)由题意知|x1|A1(0)A2(0),则有直线A1P的方程为y(x)直线A2Q的方程为y(x).方法一:联立①②解得交点坐标为xy,即x1y1x≠0|x|.而点P(x1y1)在双曲线y21上,所以y1.代入上式,整理得所求轨迹E的方程为y21x≠0x≠±.[来源:www.shulihua.net]方法二:设点M(xy)A1PA2Q的交点,×y2(x22).又点P(x1y1)在双曲线上,因此y1,即y1.[来源:www.shulihua.net]代入式整理得y21.因为点PQ是双曲线上的不同两点,所以它们与点A1A2均不重合.故点A1A2均不在轨迹E.过点(0,1)A2(0)的直线l的方程为xy0.解方程组xy0.所以直线l与双曲线只有唯一交点A2.故轨迹E不过点(0,1).同理轨迹E也不过点(0,-1).综上分析,轨迹E的方程为y21x≠0x≠±.(2)设过点H(0h)的直线为ykxh(h1)联立y21(12k2)x24khx2h220.Δ16k2h24(12k2)(2h22)0,得h212k20解得k1k2=-.由于l1l2,则k1k2=-=-1,故h.过点A1A2分别引直线l1l2通过y轴上的点H(0h),且使l1l2,因此A1HA2H,由×()=-1,得h.此时,l1l2的方程分别为yxy=-x它们与轨迹E分别仅有一个交点()().所以,符合条件的h的值为.【变式训练3】双曲线1(a0b0)的左、右焦点分别为F1F2,离心率为e,过F2的直线与双曲线的右支交于AB两点,若F1AB是以A为直角顶点的等腰直角三角形,则e2等于(  )A.12        B.32C.42        D.52【解析】本题考查双曲线定义的应用及基本量的求解.[来源:www.shulihua.net]据题意设|AF1|x,则|AB|x|BF1|x.由双曲线定义有|AF1||AF2|2a|BF1||BF2|2a(|AF1||BF1|)(|AF2||BF2|)(1)xx4a,即x2a|AF1|.故在RtAF1F2中可求得|AF2|.[来源:www.shulihua.net]又由定义可得|AF2||AF1|2a2a2a,即22a两边平方整理得c2a2(52)e252,故选D.总结提高1.要与椭圆类比来理解、掌握双曲线的定义、标准方程和几何性质,但应特别注意不同点,如abc的关系、渐近线等.2.要深刻理解双曲线的定义,注意其中的隐含条件.||PF1||PF2||2a|F1F2|时,P的轨迹是双曲线;当||PF1||PF2||2a|F1F2|时,P的轨迹是以F1F2为端点的射线;当||PF1||PF2||2a|F1F2|时,P无轨迹.3.双曲线是具有渐近线的曲线,画双曲线草图时,一般先画出渐近线,要掌握以下两个问题:(1)已知双曲线方程,求它的渐近线;(2)求已知渐近线的双曲线的方程.如已知双曲线渐近线y±x,可将双曲线方程设为λ(λ≠0),再利用其他条件确定λ的值,求法的实质是待定系数法.  

    相关教案

    高考数学一轮复习总教案:17.2 参数方程:

    这是一份高考数学一轮复习总教案:17.2 参数方程,共3页。教案主要包含了变式训练1,变式训练2,变式训练3等内容,欢迎下载使用。

    高考数学一轮复习总教案:12.11 正态分布:

    这是一份高考数学一轮复习总教案:12.11 正态分布,共2页。教案主要包含了变式训练1,变式训练2等内容,欢迎下载使用。

    高考数学一轮复习总教案:12.2 排列与组合:

    这是一份高考数学一轮复习总教案:12.2 排列与组合,共2页。教案主要包含了变式训练1,变式训练2,变式训练3等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map