|教案下载
终身会员
搜索
    上传资料 赚现金
    高考数学一轮复习总教案:14.3 数学归纳法
    立即下载
    加入资料篮
    高考数学一轮复习总教案:14.3 数学归纳法01
    高考数学一轮复习总教案:14.3 数学归纳法02
    还剩2页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高考数学一轮复习总教案:14.3 数学归纳法

    展开
    这是一份高考数学一轮复习总教案:14.3 数学归纳法,共4页。教案主要包含了变式训练1,变式训练2,变式训练3等内容,欢迎下载使用。

    典例精析
    题型一 用数学归纳法证明恒等式
    【例1】是否存在常数a、b、c,使等式12+22+32+…+n2+(n-1)2+…+22+12=an(bn2+c)对于一切n∈N*都成立?若存在,求出a、b、c并证明;若不存在,试说明理由.
    【解析】 假设存在a、b、c使12+22+32+…+n2+(n-1)2+…+22+12=an(bn2+c)对于一切n∈N*都成立.
    当n=1时,a(b+c)=1;
    当n=2时,2a(4b+c)=6;
    当n=3时,3a(9b+c)=19.
    解方程组解得
    证明如下:
    当n=1时,显然成立;
    假设n=k(k∈N*,k≥1)时等式成立,
    即12+22+32+…+k2+ (k-1)2+…+22+12=eq \f(1,3)k(2k2+1);
    则当n=k+1时,
    12+22+32+…+k2+(k+1)2+k2+(k-1)2+…+22+12=eq \f(1,3)k(2k2+1)+(k+1)2+k2
    =eq \f(1,3)k(2k2+3k+1)+(k+1)2=eq \f(1,3)k(2k+1)(k+1)+(k+1)2
    =eq \f(1,3)(k+1)(2k2+4k+3)=eq \f(1,3)(k+1)[2(k+1)2+1].
    因此存在a=eq \f(1,3),b=2,c=1,使等式对一切n∈N*都成立.
    【点拨】 用数学归纳法证明与正整数n有关的恒等式时要弄清等式两边的项的构成规律:由n=k到n=k+1时等式左右各如何增减,发生了怎样的变化.
    【变式训练1】用数学归纳法证明:
    当n∈N*时,eq \f(1,1×3)+eq \f(1,3×5)+…+eq \f(1,(2n-1)(2n+1))=eq \f(n,2n+1).
    【证明】(1)当n=1时,左边=eq \f(1,1×3)=eq \f(1,3),右边=eq \f(1,2×1+1)=eq \f(1,3),
    左边=右边,所以等式成立.
    (2)假设当n=k(k∈N*)时等式成立,即有eq \f(1,1×3)+eq \f(1,3×5)+…+eq \f(1,(2k-1)(2k+1))=eq \f(k,2k+1),
    则当n=k+1时,
    eq \f(1,1×3)+eq \f(1,3×5)+…+eq \f(1,(2k-1)(2k+1))+eq \f(1,(2k+1)(2k+3))=eq \f(k,2k+1)+eq \f(1,(2k+1)(2k+3))
    =eq \f(k(2k+3)+1,(2k+1)(2k+3))=eq \f(2k2+3k+1,(2k+1)(2k+3))=eq \f(k+1,2k+3)=eq \f(k+1,2(k+1)+1),
    所以当n=k+1时,等式也成立.
    由(1)(2)可知,对一切n∈N*等式都成立.
    题型二 用数学归纳法证明整除性问题
    【例2】 已知f(n)=(2n+7)·3n+9,是否存在自然数m使得任意的n∈N*,都有m整除f(n)?若存在,求出最大的m值,并证明你的结论;若不存在,请说明理由.
    【解析】 由f(1)=36,f(2)=108,f(3)=360,猜想:f(n)能被36整除,下面用数学归纳法证明.
    (1)当n=1时,结论显然成立;
    (2)假设当n=k(k≥1,k∈N*)时结论成立,即f(k)=(2k+7)·3k+9能被36整除.
    则当n=k+1时,f(k+1)=(2k+9)·3k+1+9=3[(2k+7)·3k+9]+18(3k-1-1),
    由假设知3[(2k+7)·3k+9]能被36 整除,又3k-1-1是偶数,
    故18(3k-1-1)也能被36 整除.即n=k+1时结论也成立.
    故由(1)(2)可知,对任意正整数n都有f(n)能被36整除.
    由f(1)=36知36是整除f(n)的最大值.
    【点拨】 与正整数n有关的整除性问题也可考虑用数学归纳法证明. 在证明n=k+1结论也成立时,要注意“凑形”,即凑出归纳假设的形式,以便于充分利用归纳假设的条件.
    【变式训练2】求证:当n为正整数时,f(n)=32n+2-8n-9能被64整除.
    【证明】方法一:①当n=1时,f(1)=34-8-9=64,命题显然成立.
    ②假设当n=k(k≥1,k∈N*)时结论成立,即f(k)=32k+2-8k-9能被64整除.
    由于32(k+1)+2-8(k+1)-9=9(32k+2-8k-9)+9·8k+9·9-8(k+1)-9=9(32k+2-8k-9)+64(k+1),即f(k+1)=9f(k)+64(k+1),
    所以n=k+1时命题也成立.
    根据①②可知,对任意的n∈N*,命题都成立.
    方法二:①当n=1时,f(1)=34-8-9=64,命题显然成立.
    ②假设当n=k(k≥1,k∈N*)时,f(k)=32k+2-8k-9能被64整除.由归纳假设,设32k+2-8k-9=64m(m为大于1的自然数),将32k+2=64m+8k+9代入到f(k+1)中得
    f(k+1)=9(64m+8k+9)-8(k+1)-9=64(9m+k+1),所以n=k+1时命题也成立.
    根据①②可知,对任意的n∈N*,命题都成立.
    题型三 数学归纳法在函数、数列、不等式证明中的运用
    【例3】(2013山东模拟)等比数列{an}的前n项和为Sn,已知对任意的n∈N*,点(n,Sn)均在函数y=bx+r(b>0且b≠1,b,r均为常数)的图象上.
    (1)求r的值;
    (2)当b=2时,记bn=2(lg2an+1)(n∈N*),求证:对任意的n∈N*,不等式eq \f(b1+1,b1)·
    eq \f(b2+1,b2)·…·eq \f(bn+1,bn)>eq \r(n+1)成立.
    【解析】(1)因为点(n,Sn)均在函数y=bx+r(b>0且b≠1,b,r均为常数)的图象上,
    所以Sn=bn+r(b>0且b≠1,b,r均为常数).
    当n=1时,a1=S1=b+r;当n≥2时,an=Sn-Sn-1=bn+r-bn-1-r=(b-1)bn-1.
    又数列{an}为等比数列,故r=-1且公比为b.
    (2)当b=2时,an=2n-1,
    所以bn=2(lg2an+1)=2(lg22n-1+1)=2n(n∈N*),
    所以eq \f(bn+1,bn)=eq \f(2n+1,2n),
    于是要证明的不等式为eq \f(3,2)·eq \f(5,4)·…·eq \f(2n+1,2n)>eq \r(n+1)对任意的n∈N*成立.
    下面用数学归纳法证明.
    当n=1时,eq \f(3,2)>eq \r(2)显然成立.
    假设当n=k时不等式成立,即eq \f(3,2)·eq \f(5,4)·…·eq \f(2k+1,2k)>eq \r(k+1).
    则当n=k+1时,eq \f(3,2)·eq \f(5,4)·…·eq \f(2k+1,2k)·eq \f(2k+3,2k+2)>eq \r(k+1)·eq \f(2k+3,2k+2)=eq \r(k+1)·eq \r((\f(2k+3,2k+2))2)=eq \r(\f((2k+3)2,4(k+1)))
    =eq \r(\f([2(k+1)+1]2,4(k+1)))=eq \r(\f(4(k+1)2+4(k+1)+1,4(k+1)))=eq \r((k+1)+1+\f(1,4(k+1)))>eq \r((k+1)+1),
    即当n=k+1时不等式成立,所以原不等式对任意n∈N*成立.
    【点拨】 运用归纳推理得到的结论不一定正确,需进行证明.用数学归纳法证明不等式时必须要利用归纳假设的条件,并且灵活运用放缩法、基本不等式等数学方法.
    【变式训练3】设函数f(x)=ex-1+eq \f(a,x)(a∈R).
    (1)若函数f(x)在x=1处有极值,且函数g(x)=f(x)+b在(0,+∞)上有零点,求b的最大值;
    (2)若f(x)在(1,2)上为单调函数,求实数a的取值范围;
    (3)在(1)的条件下,数列{an}中a1=1,an+1=f(an)-f′(an),求|an+1-an|的最小值.
    【解析】(1)f′(x)=ex-1-eq \f(a,x2),又函数f(x)在x=1处有极值,
    所以f′(1)=0,即a=1,经检验符合题意.
    g′(x)=ex-1-eq \f(1,x2),当x∈(0,1)时,g′(x)<0,g(x)为减函数,当x=1时,g′(x)=0,当x∈(1,+∞)时g′(x)>0,g(x)为增函数.
    所以g(x)在x=1时取得极小值g(1)=2+b,依题意g(1)≤0,所以b≤-2,
    所以b的最大值为-2.
    (2)f′(x)=ex-1-eq \f(a,x2),
    当f(x)在(1,2)上单调递增时,ex-1-eq \f(a,x2)≥0在[1,2]上恒成立,所以a≤x2ex-1,
    令h(x)=x2,则h′(x)=ex-1(x2+2x)>0在[1,2]上恒成立,即h(x)在[1,2]上单调递增,
    所以h(x)在[1,2]上的最小值为h(1)=1,所以a≤1;
    当f(x)在[1,2]上单调递减时,同理a≥x2ex-1,
    h(x)=x2ex-1在[1,2]上的最大值为h(2)=4e,所以a≥4e.
    综上实数a的取值范围为a≤1或a≥4e.
    (3)由(1)得a=1,所以f(x)-f′(x)=eq \f(1,x)+eq \f(1,x2),因此an+1=eq \f(1,an)+eq \f(1,a\\al(2,n)),a1=1,所以a2=2,可得0<a2n+1<1,a2n+2>2.用数学归纳法证明如下:
    ①当n=1时,a3=eq \f(3,4),a4=eq \f(28,9),结论成立;
    ②设n=k,k∈N*时结论成立,即0<a2k+1<1,a2k+2>2,
    则n=k+1时,a2k+3=eq \f(1,a2k+2)+eq \f(1,a\\al(2,2k+2))<eq \f(1,2)+eq \f(1,2)=1,
    所以0<a2k+3<1,a2k+4=eq \f(1,a2k+3)+eq \f(1,a\\al(2,2k+3))>1+1=2.
    所以n=k+1时结论也成立,
    根据①②可得0<a2n+1<1,a2n+2>2恒成立,
    所以|an+1-an|≥a2-a1=2-1=1,即|an+1-an|的最小值为1.
    总结提高
    数学归纳法是证明与自然数有关的命题的常用方法,它是在归纳的基础上进行的演绎推理,其大前提是皮亚诺公理(即归纳公理):
    设M是正整数集合的子集,且具有如下性质:
    ①1∈M;
    ②若k∈M,则k+1∈M,那么必有M=N*成立.
    数学归纳法证明的两个步骤体现了递推的数学思想,第一步是递推的基础,第二步是递推的依据,通过对两个命题的证明替代了无限多次的验证,实现了有限与无限的辩证统一.
    从近几年的高考试题来看,比较注重于对数学归纳法的思想本质的考查,如“归纳、猜想、证明”是一种常见的命题形式.而涉及的知识内容也是很广泛的,可覆盖代数命题、三角恒等式、不等式、数列、几何命题、整除性命题等.其难点往往在第二步,关键是“凑形”以便运用归纳假设的条件.
    相关教案

    高考数学一轮复习总教案:12.11 正态分布: 这是一份高考数学一轮复习总教案:12.11 正态分布,共2页。教案主要包含了变式训练1,变式训练2等内容,欢迎下载使用。

    高考数学一轮复习总教案:12.2 排列与组合: 这是一份高考数学一轮复习总教案:12.2 排列与组合,共2页。教案主要包含了变式训练1,变式训练2,变式训练3等内容,欢迎下载使用。

    高考数学一轮复习总教案:6.4 数列求和: 这是一份高考数学一轮复习总教案:6.4 数列求和,共3页。教案主要包含了变式训练1,变式训练2,变式训练3等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        高考数学一轮复习总教案:14.3 数学归纳法
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map