2021高考数学(理)大一轮复习习题:第二章 函数的概念与基本初等函数ⅰ 课时达标检测(五) 函数及其表示 word版含答案
展开
这是一份2021高考数学(理)大一轮复习习题:第二章 函数的概念与基本初等函数ⅰ 课时达标检测(五) 函数及其表示 word版含答案,共4页。试卷主要包含了已知具有性质等内容,欢迎下载使用。
1.下列图象可以表示以M={x|0≤x≤1}为定义域,以N={y|0≤y≤1}为值域的函数的是( )
解析:选C A选项中的值域不对,B选项中的定义域错误,D选项不是函数的图象,由函数的定义可知选项C正确.
2.若函数f(x+1)的定义域为,则f(2x-2)的定义域为( )
A. B.
C. D.
解析:选B ∵f(x+1)的定义域为,即0≤x≤1,∴1≤x+1≤2.∵f(x+1)与f(2x-2)是同一个对应关系f,∴2x-2与x+1的取值范围相同,即1≤2x-2≤2,也就是3≤2x≤4,解得lg23≤x≤2.∴函数f(2x-2)的定义域为.
3.若二次函数g(x)满足g(1)=1,g(-1)=5,且图象过原点,则g(x)的解析式为( )
A.g(x)=2x2-3x B.g(x)=3x2-2x
C.g(x)=3x2+2x D.g(x)=-3x2-2x
解析:选B 设g(x)=ax2+bx+c(a≠0),∵g(1)=1,g(-1)=5,且图象过原点,∴eq \b\lc\{\rc\ (\a\vs4\al\c1(a+b+c=1,,a-b+c=5,,c=0,))解得eq \b\lc\{\rc\ (\a\vs4\al\c1(a=3,,b=-2,,c=0,))∴g(x)=3x2-2x.
4.若函数f(x)= eq \r(2x2+2ax-a-1)的定义域为R,则a的取值范围为________.
解析:因为函数f(x)的定义域为R,所以2x2+2ax-a-1≥0对x∈R恒成立,即2x2+2ax-a≥20,x2+2ax-a≥0恒成立,因此有Δ=(2a)2+4a≤0,解得-1≤a≤0.
答案:
5.设函数f(x)=eq \b\lc\{\rc\ (\a\vs4\al\c1(3x-b,x0,,lgx-1≠0,))即eq \b\lc\{\rc\ (\a\vs4\al\c1(x+1x-10≤0,,x>1,,x≠2,))
解得10,,fx+1+1,x≤0,))则feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(4,3)))+feq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(4,3)))的值等于( )
A.1 B.2 C.3 D.-2
解析:选C feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(4,3)))=-cseq \f(4π,3)=cseq \f(π,3)=eq \f(1,2);feq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(4,3)))=feq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,3)))+1=feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(2,3)))+2=-cseq \f(2π,3)+2=eq \f(1,2)+2=eq \f(5,2).故feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(4,3)))+feq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(4,3)))=3.
3.若f(x)对于任意实数x恒有2f(x)-f(-x)=3x+1,则f(1)=( )
A.2 B.0 C.1 D.-1
解析:选A 令x=1,得2f(1)-f(-1)=4,①
令x=-1,得2f(-1)-f(1)=-2, ②
联立①②得f(1)=2.
4.(2017·贵阳检测)根据统计,一名工人组装第x件某产品所用的时间(单位:分钟)为f(x)=eq \b\lc\{\rc\ (\a\vs4\al\c1(\f(c,\r(x)),x
相关试卷
这是一份高中数学高考2018高考数学(理)大一轮复习习题:第二章 函数的概念与基本初等函数Ⅰ 课时达标检测(五) 函数及其表示 Word版含答案,共4页。试卷主要包含了已知具有性质等内容,欢迎下载使用。
这是一份2021高考数学(理)大一轮复习习题:第二章 函数的概念与基本初等函数ⅰ 课时达标检测(十一) 函数的图象及其应用 word版含答案,共7页。试卷主要包含了函数f=eq \f的图象大致为等内容,欢迎下载使用。
这是一份2021高考数学(理)大一轮复习习题:第二章 函数的概念与基本初等函数ⅰ 课时达标检测(十二) 函数与方程 word版含答案,共5页。