2021高考数学(文)大一轮复习习题 第二章 函数、导数及其应用 课时跟踪检测 (十二) 函数模型及其应用 word版含答案
展开
这是一份2021高考数学(文)大一轮复习习题 第二章 函数、导数及其应用 课时跟踪检测 (十二) 函数模型及其应用 word版含答案,共7页。试卷主要包含了某市出租车收费标准如下等内容,欢迎下载使用。
1.某种商品进价为4元/件,当日均零售价为6元/件,日均销售100件,当单价每增加1元,日均销量减少10件,试计算该商品在销售过程中,若每天固定成本为20元,则预计单价为多少时,利润最大( )
A.8元/件 B.10元/件
C.12元/件 D.14元/件
解析:选B 设单价为6+x,日均销售量为100-10x,则日利润y=(6+x-4)(100-10x)-20
=-10x2+80x+180
=-10(x-4)2+340(0<x<10).
∴当x=4时,ymax=340.
即单价为10元/件,利润最大,故选B.
2.在某个物理实验中,测量得变量x和变量y的几组数据,如下表:
则对x,y最适合的拟合函数是( )
A.y=2x B.y=x2-1
C.y=2x-2 D.y=lg2x
解析:选D 根据x=0.50,y=-0.99,代入计算,可以排除A;根据x=2.01,y=0.98,代入计算,可以排除B、C;将各数据代入函数y=lg2x,可知满足题意.故选D.
3.向一杯子中匀速注水时,杯中水面高度h随时间t变化的函数h=f(t)的图象如图所示.则杯子的形状是( )
解析:选A 从题图看出,在时间段,内水面高度是匀速上升的,在上升慢,在上升快,故选A.
4.某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km按起步价付费);超过3 km但不超过8 km时,超过部分按每千米2.15元收费;超过8 km时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________km.
解析:设出租车行驶x km时,付费y元,
则y=eq \b\lc\{\rc\ (\a\vs4\al\c1(9,0<x≤3,,8+2.15x-3+1,3<x≤8,,8+2.15×5+2.85x-8+1,x>8,))
由y=22.6,解得x=9.
答案:9
5.已知某矩形广场的面积为4万平方米,则其周长至少为________.
解析:设这个广场的长为x米,
则宽为eq \f(40 000,x)米.
所以其周长为l=2eq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(40 000,x)))≥800,
当且仅当x=200时取等号.
答案:800
二保高考,全练题型做到高考达标
1.某电信公司推出两种手机收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内通话时间t(分钟)与电话费s(元)的函数关系如图所示,当通话150分钟时,这两种方式电话费相差( )
A.10元 B.20元
C.30元 D.eq \f(40,3)元
解析:选A 依题意可设sA(t)=20+kt,sB(t)=mt,
又sA(100)=sB(100),
∴100k+20=100m,
得k-m=-0.2,于是sA(150)-sB(150)=20+150k-150m=20+150×(-0.2)=-10,
即两种方式电话费相差10元.选A.
2.某商店已按每件80元的成本购进某商品1 000件,根据市场预测,销售价为每件100元时可全部售完,定价每提高1元时销售量就减少5件,若要获得最大利润,销售价应定为每件( )
A.100元 B.110元
C.150元 D.190元
解析:选C 设售价提高x元,利润为y元,则依题意得y=(1 000-5x)×(100+x)-80×1 000=-5x2+500x+20 000=-5(x-50)2+32 500,故当x=50时,ymax=32 500,此时售价为每件150元.
3.(2016·北京朝阳统一考试)设某公司原有员工100人从事产品A的生产,平均每人每年创造产值t万元(t为正常数).公司决定从原有员工中分流x(0
相关试卷
这是一份2021高考数学(文)大一轮复习习题 第二章 函数、导数及其应用 课时跟踪检测(十一) 函数与方程 word版含答案,共4页。
这是一份2021高考数学(文)大一轮复习习题 第二章 函数、导数及其应用 课时跟踪检测(七) 函数的图象 word版含答案,共6页。试卷主要包含了函数y=eq \f的图象可能是,已知函数f=2x,x∈R.等内容,欢迎下载使用。
这是一份2021高考数学(文)大一轮复习习题 第二章 函数、导数及其应用 课时跟踪检测(九) 指数与指数函数 word版含答案,共4页。试卷主要包含了化简下列各式,已知函数f=a|x+b|等内容,欢迎下载使用。