![九年级下册数学北师大版 第三章 圆 7 切线长定理第1页](http://www.enxinlong.com/img-preview/2/3/5908949/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![九年级下册数学北师大版 第三章 圆 7 切线长定理第2页](http://www.enxinlong.com/img-preview/2/3/5908949/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:北师大版数学九年级下册同步PPT课件+同步教案
初中数学北师大版九年级下册7 切线长定理优秀教学设计
展开
这是一份初中数学北师大版九年级下册7 切线长定理优秀教学设计,共5页。
第三章 圆7 切线长定理1.理解切线长的概念,掌握切线长定理.2.学会运用切线长定理解有关问题.3.通过对例题的分析,培养学生分析总结问题的习惯,提高学生综合运用知识解题的能力,培养数形结合的思想.学会运用切线长定理解有关问题.通过对例题的分析,培养学生分析总结问题的习惯,提高学生综合运用知识解题的能力,培养数形结合的思想.1.如何过⊙O外一点P画出⊙O的切线? 如下左图,借助三角板,我们可以画出PA是⊙O的切线.2.这样的切线能画出几条?3.如果∠P=50°,求∠AOB的度数.活动内容1:探究1:如何用圆规和直尺作出这两条切线呢?思考:已画出切线PA,PB,A,B为切点,则∠OAP=90°,连接OP,可知A,B 除了在⊙O上,还在怎样的圆上?探究2:切线长概念切线与切线长是一回事吗?它们有什么区别与联系呢?比一比:切线与切线长切线和切线长是两个不同的概念:1.切线是一条与圆相切的直线,不能度量;2.切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.折一折:思考:已知⊙O切线PA,PB,A,B为切点,把圆沿着直线OP对折,你能发现什么?证一证:请证明你所发现的结论. PA=PB,∠OPA=∠OPB证明:∵PA,PB与⊙O相切,点A,B是切点,∴OA⊥PA,OB⊥PB.即∠OAP=∠OBP=90°,∵ OA=OB,OP=OP,∴Rt△AOP≌Rt△BOP(HL)∴ PA = PB, ∠OPA=∠OPB.探究2:切线长定理-过圆外一点,所画的圆的两条切线的长相等.几何语言:∵PA,PB分别切⊙O于A,B,∴PA=PB,OP平分∠APB.反思:切线长定理为证明线段相等、角相等提供新的方法试一试:若连接两切点A,B,AB交OP于点M.你又能得出什么新的结论?并给出证明.明确:OP垂直平分AB证明:∵PA,PB是⊙O的切线,点A,B是切点,∴PA=PB,∠OPA=∠OPB.∴△PAB是等腰三角形,PM为顶角的平分线.∴OP垂直平分AB.探究3:PA,PB是⊙O的两条切线,A,B为切点,直线OP交⊙O于点D,E,交AB于点C.(1)写出图中所有的垂直关系OA⊥PA,OB ⊥PB AB⊥OP(2)写出图中与∠OAC相等的角∠OAC=∠OBC=∠APC=∠BPC(3)写出图中所有的全等三角形△AOP≌△BOP,△AOC≌△BOC,△ACP≌△BCP.(4)写出图中所有的等腰三角形△ABP,△AOB.活动2:探究归纳反思:在解决有关圆的切线长问题时,往往需要我们构建基本图形.(1)分别连接圆心和切点;(2)连接两切点;(3)连接圆心和圆外一点.例1: △ABC的内切圆⊙O与BC,CA,AB分别相切于点D,E,F,且AB=9cm,BC=14cm,CA=13cm,求AF,BD,CE的长.解:设AF=x,则AE=x∴CD=CE=AC-AE=13-x,BD=BF=AB-AF=9-x.由BD+CD=BC,可得13-x+9-x=14,解得x=4.∴ AF=4 cm, BD=5 cm, CE=9 cm.例2:如图,四边形ABCD的边AB,BC,CD,DA和⊙O分别相切于点L,M,N,P,求证:AD+BC=AB+CD.证明:由切线长定理,得AL=AP,LB=MB,NC=MC,DN=DP,∴AP+MB+MC+DP=AL+LB+NC+DN,即AD+BC=AB+CD。补充:圆的外切四边形的两组对边的和相等.本节课应掌握:(1)切线和圆只有一个公共点.(2)切线和圆心的距离等于圆的半径.(3)切线垂直于过切点的半径.(4)经过圆心垂直于切线的直线必过切点.(5)经过切点垂直于切线的直线必过圆心.(6)切线长定理.
相关教案
这是一份初中数学北师大版九年级下册7 切线长定理教案设计,共5页。教案主要包含了知识回顾,引入新课,观察思考,猜想验证,例题讲解,尝试成功,学以致用,探究创新,例题示范,讲练结合,巩固提升 展示自我,总结概括,整理知识,达标测试,反馈纠正等内容,欢迎下载使用。
这是一份初中数学北师大版九年级下册第三章 圆7 切线长定理教案设计,共4页。教案主要包含了教材分析,学情分析,教法,教学过程分析,教学评价等内容,欢迎下载使用。
这是一份初中7 切线长定理教案,共6页。教案主要包含了知识与技能,过程与方法,情感态度,教学重点,教学难点,教学说明,归纳结论等内容,欢迎下载使用。
![英语朗读宝](http://www.enxinlong.com/img/images/ed4b79351ae3a39596034d4bbb94b742.jpg)