所属成套资源:北师大版数学九年级下册同步PPT课件+同步教案
初中数学北师大版九年级下册2 圆的对称性优质课教案
展开
这是一份初中数学北师大版九年级下册2 圆的对称性优质课教案,共4页。
第三章 圆2 圆的对称性1.理解圆的轴对称性和中心对称性,会画出圆的对称轴,会找圆的对称中心;2.掌握圆心角、弧和弦之间的关系,并会用它们之间的关系解题.3.通过对圆的对称性的理解,培养学生的观察、分析、发现问题和概括问题的能力,促进学生创造性思维水平的发展和提高.对圆心角、弧和弦之间的关系的理解.能灵活运用圆的对称性解决有关实际问题,会用圆心角、弧和弦之间的关系解题.问:前面我们已探讨过轴对称图形,哪位同学能叙述一下轴对称图形的定义?(如果一个图形沿着某一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴).问:我们是用什么方法来研究轴对称图形?生:折叠.今天我们继续来探究圆的对称性.问题1:前面我们已经认识了圆,你还记得确定圆的两个元素吗?生:圆心和半径.问题2:你还记得学习圆中的哪些概念吗?忆一忆:1.圆:平面上到____________等于______的所有点组成的图形叫做圆,其中______为圆心,定长为________.2.弧:圆上_____叫做圆弧,简称弧,圆的任意一条____的两个端点分圆成两条弧,每一条弧都叫做圆的半径.__________称为优弧,_____________称为劣弧.3.___________叫做等圆,_________叫做等弧.4.圆心角:顶点在_____的角叫做圆心角.知识点一:圆的对称性1.圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴? 2.大家交流一下:你是用什么方法来解决这个问题的呢?动手操作:请同学们用自己准备好的圆形纸张折叠:看折痕经不经过圆心? 学生讨论得出结论:我们通过折叠的方法得到圆是轴对称图形,经过圆心的一条直线是圆的对称轴,圆的对称轴有无数条.知识点二:圆的中心对称性.问:一个圆绕着它的圆心旋转任意一个角度,还能与原来的图形重合吗?让学生得出结论:一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合,我们把圆的这个特性称之为圆的旋转不变性.圆是中心对称图形,对称中心为圆心.做一做:在等圆⊙O和⊙ 中,分别作相等的圆心角∠AOB和(如图3-8),将两圆重叠,并固定圆心,然后把其中的一个圆旋转一个角度,得OA与重合.你能发现哪些等量关系吗?说一说你的理由.小红认为,,她是这样想的:∵半径OA重合,,∴半径OB与重合,∵点A与点重合,点B与点重合,∴与重合,弦AB与弦重合,∴=,AB=.生:小红的想法正确吗?同学们交流自己想法,然后得出结论,教师点拨.结论:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.知识点三:圆心角、弧、弦之间的关系.问:在同圆或等圆中,如果两个圆心角所对的弧相等,那么它们所对的弦相等吗?这两个圆心角相等吗?你是怎么想的? 学生之间交流,谈谈各自想法,教师点拨.结论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.例:如图3-9,AB,DE是⊙O的直径,C是⊙O上的一点,且,BE与CE的大小有什么关系?为什么?解:BE=CE,理由是:∵∠AOD=∠BOE,∴,又∵,∴,∴BE=CE.本节课应掌握:1.圆是轴对称图形,经过圆心的一条直线是圆的对称轴,圆的对称轴有无数条.2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.
相关教案
这是一份初中湘教版2.1 圆的对称性优秀教学设计及反思,共4页。
这是一份数学九年级下册2 圆的对称性教学设计,共8页。教案主要包含了教学目标,教学重难点,教学用具,教学过程设计等内容,欢迎下载使用。
这是一份北师大版九年级下册2 圆的对称性教学设计,共6页。