![浙教版中考数学模拟试题及答案.doc第1页](http://www.enxinlong.com/img-preview/2/3/5914219/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![浙教版中考数学模拟试题及答案.doc第2页](http://www.enxinlong.com/img-preview/2/3/5914219/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![浙教版中考数学模拟试题及答案.doc第3页](http://www.enxinlong.com/img-preview/2/3/5914219/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
浙教版中考数学模拟试题及答案.doc
展开这是一份浙教版中考数学模拟试题及答案.doc,共13页。试卷主要包含了仔细选一选,认真填一填,全面答一答等内容,欢迎下载使用。
考试时间100分钟 满分120分
一、仔细选一选(本题有10个小题,每小题3分,共30分)
下面每小题给出的四个选项中,只有一个是正确的。注意可以用多种不同的方法来选取正确答案
1、下列运算正确的是( )
A.B.
C.D.
2、太阳内部高温核聚变反应释放的辐射能功率为千瓦,到达地球的仅占20亿分之一,到达地球的辅射能功率为( )千瓦.(用科学计数法表示,保留2个有效数字)
A.B.C.D.
3、一个用于防震的L形包装塑料泡沫如图所示,则该物体的俯视图是( )
4、在四张完全相同的卡片上,分别画有圆、菱形、等腰三角形、等腰梯形,现从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是( )
A. B. C. D.1
5、人民币1993年版的一角硬币正面图案中有一个正九边形, 如果设这个正九边形的半径为R, 那么它的周长是( )
(A)9Rsin20° (B)9Rsin40° (C)18Rsin20° (D)18Rsin40°
6、希望中学开展以“我最喜欢的职业”为主题的调查活动,通过对学生的随机抽样调查得到一组数据,如图是根据这组数据绘制的不完整的统计图,则下列说法中,不正确的是( )
A.被调查的学生有200人
B.被调查的学生中喜欢教师职业的有40人
C.被调查的学生中喜欢其他职业的占40%
D.扇形图中,公务员部分所对应的圆心角为72°
7、已知m,n为实数,则解可以为 –3 < x <3的不等式组是 ( )
8、如图,若点M是x轴正半轴上任意一点,过点M作PQ∥y轴,分别交函数y=(x>0)和y=(x>0)的图象于点P和Q,连接OP和OQ.则下列结论正确的是( )
A.∠POQ不可能等于90° B.=
C.这两个函数的图象一定关于x轴对称 D.△POQ的面积是(|k1|+|k2|)
9、如图,菱形ABCD和菱形ECGF的边长分别为3和4,∠A=120°,则图中阴影部分的面积( )
A. B. C. D.3
10、如图,已知点A(12,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=8时,这两个二次函数的最大值之和等于( )
A.5 B. 2 C.8 D.6
第8题图
第10题图
第9题图
二、认真填一填(本题有6个小题,每小题4分,共24分)
要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案.
11.数据,4,2,5,3的平均数为,且和是方程的两个根,则= ▲ .
12.某工厂2010年、2011年、2012年的产值连续三年呈直线上升,具体数据如下表:
则2011年的产值为 ▲ .
(第13题图)
13.一副三角板叠在一起如图放置,最小锐角的顶点D恰好放在等腰直角 三角板的
斜边AB上,BC与DE交于点M.如果∠ADF=100°,那么∠BMD为 ▲ 度.
(第15题图)
14.已知关于x的方程的解是正数,则m的取值范围为 ▲ .
15、如图,已知点A(1,0)、B(7,0),⊙A、⊙B的半径分别为1和2,
当⊙A与⊙B相切时,应将⊙A沿轴向右平移 ▲ 个单位.
(第16题)图)图)
16、如图,将正△ABC分割成m个边长为1的小正三角形和
一个黑色菱形,这个黑色菱形可分割成n个 边长为1的小
三角形,若,则△ABC的周长是 ▲ .
三、全面答一答(本题有7个小题,共66分)
解答应写出文字说明、证明过程或推演步骤,如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以。
17、(本小题满分6分)先化简,再求代数式的值.
,其中.
18、(本小题满分8分)如图,已知线段。
(1)只用直尺(没有刻度的尺)和圆规,求作一个直角三角形ABC,以AB和BC分别为两条直角边,使AB=,BC=(要求保留作图痕迹,不必写出作法);
(2)若在(1)作出的RtΔABC中,AB=8cm,求AC边上的高。
A
B
C
D
E
19、(本小题满分8分)如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A、D重合,连结BE、EC.试猜想线段BE和EC的关系,并证明你的猜想.
20、(本小题满分10分)为了迎接全市体育中考,某中学对全校初三男生进行了立定跳远项目测试,并从参加测试的500名男生中随机抽取了部分男生的测试成绩( 单位:米,精确到0.01米)作为样本进行分析,绘制了如图所示的频数分布直方图( 每组含最低值,不含最高值).已知图中从左到右每个小长方形的高的比依次为,其中这一小组的频数为8,请根据有关信息解答下列问题:
第20题图
1.60 1.80 2.00 2.20 2.40 2.60
(1)填空:这次调查的样本容量为 ,2.40~2.60
这一小组的频率为 ;
(2)请指出样本成绩的中位数落在哪一小组内,并说明理由;
(3)样本中男生立定跳远的人均成绩不低于多少米?
(4)请估计该校初三男生立定跳远成绩在2.00米以上
( 包括2.00米)的约有多少人?
21、(本小题满分10分)如图,有一直径MN=4的半圆形纸片,其圆心为点P,从初始位置Ⅰ开始,在无滑动的情况下沿数轴向右翻滚至位置Ⅴ,其中,位置Ⅰ中的MN平行于数轴,且半⊙P与数轴相切于原点O;位置Ⅱ和位置Ⅳ中的MN垂直于数轴,位置Ⅲ中的MN在数轴上;位置Ⅴ中的点N到数轴的距离为3,且半⊙P与数轴相切于点A.
解答下列问题:
(1)纸片半⊙P从位置Ⅲ翻滚到位置Ⅳ时,该纸片所扫过 图形的面积;
(2)求位置Ⅲ中的圆心P在数轴上表示的数;
(3)求点A在数轴上表示的数.
22、(本小题满分12分)已知:如图,在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c.点E是AC边上的一个动点(点E与点A、C不重合),点F是AB边上的一个动点(点F与点A、B不重合),连接EF.
(1)当a、b满足a2+b2-16a-12b+100=0,且c是不等式组的最大整数解时,试说明△ABC的形状;
(2)在(1)的条件得到满足的△ABC中,若EF平分△ABC的周长,设AE=x,
y表示△AEF的面积,试写出y关于x的函数关系式;
23、(本小题满分12分)如图,在等腰三角形ABC中,AB=AC,以底边BC的垂直平分线和BC所在的直线建立平面直角坐标系,抛物线经过A、B两点.
(1)直接写出点A、点B的坐标;
(2)若一条与y轴重合的直线l以每秒2个单位长度的速度向右平移,分别交线段OA、CA和抛物线于点E、M和点P,连结PA、PB.设直线l移动的时间为t(0<t<4)秒,求四边形PBCA的面积S(面积单位)与t(秒)的函数关系式,并求出四边形PBCA的最大面积;
(3)在(2)的条件下,抛物线上是否存在一点P,使得△PAM是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
浙江锦绣·育才教育集团2013年第一次中考模拟试卷
初三数学(答卷)
一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)
二. 认真填一填 (本题有6个小题, 每小题4分, 共24分)
11、 ; 12、 ; 13、 ;
14、 ; 15、 ; 16、 ;
三、全面答一答(本题有7个小题,共66分)
17、(本小题满分6分)
18、(本小题满分8分)
A
B
C
D
E
19、(本小题满分8分)
20、(本小题满分10分)
第20题图
1.60 1.80 2.00 2.20 2.40 2.60
(1) , ;
21、(本小题满分10分)
22、(本小题满分12分).
23、(本小题满分12分)
2013一模 数学(答案)
一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)
二. 认真填一填 (本题有6个小题, 每小题4分, 共24分)
11、 3 ; 12、 ; 13、 85
14、 m>-10且m≠-4 ; 15、 3或5或7或9 ; 16、 15 ;
三、全面答一答(本题有7个小题,共66分)
17、(本小题满分6分),其中.
解:原式.------3分
当a=+tan60°= 时,----------5分
原式.------6分
18、(本小题满分8分)
(1)作图如右:------------------3分
结论:------------------4分
(2)AC=4-------------5分
h=------------------8分
A
B
C
D
E
19、(本小题满分8分)
解:数量关系为:BE=EC,位置关系是:BE⊥EC.----------1分
证明:∵△AED是直角三角形,∠AED=90°,且有一个锐角是45°,
∴∠EAD=∠EDA=45°,
∴AE=DE,
∵∠BAC=90°,
∴∠EAB=∠EAD+∠BAC=90°+45°=135°,
∠EDC=∠ADC-∠EDA=180°-45°=135°,
∴∠EAB=∠EDC,
∵D是AC的中点,
∴AD= AB,
∵AC=2AB,
∴AB=DC,
∴△EAB≌△EDC,
∴EB=EC,且∠AEB=∠AED=90°,
∴∠DEC+∠BED=∠AED=∠BED=90°,w w w .
∴BE⊥ED.---------------------------------8分(中间过程酌情给分)
20、(本小题满分10分)
------2分
-------------4分
------------7分
-------------10分
21、(本小题满分10分)
解:(1)点N所经过路径长为eq \f(90π·4,180)=2π。
S半圆=eq \f(180π·22,360)=2π,S扇形=eq \f(90π·42,360)=4π,
∴半⊙P所扫过图形的面积为2π+4π=6π。-------------3分
(2)位置Ⅰ中ON的长与数轴上线段ON相等,
∵ON的长为eq \f(90π·2,180)=π,NP=2,∴位置Ⅲ中的圆心P在数轴上表示的数为π+2。-------------6分
(4)如图,作NC垂直数轴于点C,作PH⊥NC于点H,连接PA,
则四边形PHCA为矩形。
在Rt△NPH中,PN=2,NH=NC-HC=NC-PA=1,
∴sin∠NPH=eq \f(NH,PN)=eq \f(1,2)。∴∠NPH=30°。∴∠MPA=60°。
∴MA的长为eq \f(60π·2,180)=eq \f(2π,3)。
∴ OA的长为π+4+eq \f(2,3)π=eq \f(5,3)π+4。-------------10分
22、(本小题满分12分)
-------------------2分
-------------------4分
-------------------6分
-------------------8分
-------------------12
23、(本小题满分12分)
解:(1)A(8,0),B(0,4)。
(2)∵AB=AC,∴OB=OC。∴C(0,-4)。
设直线AC:,由A(8,0),C(0,-4)得
,解得。∴直线AC:。
∵ 直线l移动的速度为2,时间为t,∴OE=2t。
设P,
在中,令x=2t,得,∴M(2t,)。
∵BC=8,PM=,OE=2t,EA=,
∴
。
∴四边形PBCA的面积S与t的函数关系式为(0<t<4)。
∵,
∴四边形PBCA的最大面积为41个平方单位。
(3)存在。∵由(2),在0<t<4,即0<t<8时,∠AMP和∠APM不可能为直角。
若∠PAM为直角,则PA⊥CA,∴△AOC∽△PEA。∴。
设P(p,),则OC=4,OA=8,EA=8-p,EP=,
∴,整理得,解得(舍去)。
当时,EP==10。∴P(3,10)。
∴当P(3,10)时,△PAM是直角三角形。
年份
2010
2011
2012
产值
题号
1
2
3
4
5
6
7
8
9
10
答案
题号
1
2
3
4
5
6
7
8
9
10
答案
D
A
B
A
C
C
A
D
B
B
相关试卷
这是一份2022年浙教版重点名校中考数学模拟试题含解析,共22页。
这是一份中考数学模拟试题与答案38,共8页。试卷主要包含了填空题,选择题,解答题等内容,欢迎下载使用。
这是一份中考数学模拟试题与答案40,共8页。试卷主要包含了填空题,选择题,解答题等内容,欢迎下载使用。