还剩16页未读,
继续阅读
解题技巧 中考数学易错知识最全汇总+压轴题解题技巧
展开
这是一份解题技巧 中考数学易错知识最全汇总+压轴题解题技巧,共6页。
易错知识
1、数与式
易错点1:
有理数、无理数以及实数的有关概念理解错误,相反数、倒数、绝对值的意义概念混淆。弄不清绝对值与数的分类。选择题考得比较多。
易错点2:
关于实数的运算,要掌握好与实数的有关概念、性质,灵活地运用各种运算律,关键是把好符号关;在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误。
易错点3:
平方根、算术平方根、立方根的区别。
易错点4:
分式值为零时易忽略分母不能为零。
易错点5:
分式运算要注意运算法则和符号的变化。当分式的分子分母是多项式时要先因式分解,因式分解要分解到不能再分解为止,注意计算方法,不能去分母,把分式化为最简分式。填空题易考。
易错点6:
非负数的性质:几个非负数的和为0,每个式子都为0;整体代入法;完全平方式。
易错点7:
计算第一题易考。五个基本数的计算:0指数,三角函数,绝对值,负指数,二次根式的化简。
易错点8:
科学记数法,精确度。这个知道就好!
易错点9:
代入求值要使式子有意义。各种数式的计算方法要掌握,一定要注意计算顺序。
2、方程(组)与不等式(组)
易错点1:
各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。
易错点2:
运用等式性质时,两边同除以一个数必须要注意不能为O的情况,还要关注解方程与方程组的基本思想。消元降次的主要陷阱在于消除了一个带X公因式时回头检验!
易错点3:
运用不等式的性质3时,容易忘记改不变号的方向而导致结果出错。
易错点4:
关于一元二次方程的取值范围的题目易忽视二次项系数不为0。
易错点5:
关于一元一次不等式组有解、无解的条件易忽视相等的情况。
易错点6:
解分式方程时首要步骤去分母,分数相相当于括号,易忘记根检验,导致运算结果出错。
易错点7:
不等式(组)的解得问题要先确定解集,确定解集的方法运用数轴。
易错点8:
利用函数图象求不等式的解集和方程的解。
3、函数
易错点1:
各个待定系数表示的的意义。
易错点2:
熟练掌握各种函数解析式的求法,有几个的待定系数就要几个点值。
易错点3:
利用图像求不等式的解集和方程(组)的解,利用图像性质确定增减性。
易错点4:
两个变量利用函数模型解实际问题,注意区别方程、函数、不等式模型解决不等领域的问题。
易错点5:
利用函数图象进行分类(平行四边形、相似、直角三角形、等腰三角形)以及分类的求解方法。
易错点6:
与坐标轴交点坐标一定要会求。面积最大值的求解方法,距离之和的最小值的求解方法,距离之差最大值的求解方法。
易错点7:
数形结合思想方法的运用,还应注意结合图像性质解题。函数图象与图形结合学会从复杂图形分解为简单图形的方法,图形为图像提供数据或者图像为图形提供数据。
易错点8:
自变量的取值范围有:二次根式的被开方数是非负数,分式的分母不为0,0指数底数不为0,其它都是全体实数。
4、三角形
易错点1:
三角形的概念以及三角形的角平分线,中线,高线的特征与区别。
易错点2:
三角形三边之间的不等关系,注意其中的“任何两边”。求最短距离的方法。
易错点3:
三角形的内角和,三角形的分类与三角形内外角性质,特别关注外角性质中的“不相邻”。
易错点4:
全等形,全等三角形及其性质,三角形全等判定。着重学会论证三角形全等,三角形相似与全等的综合运用以及线段相等是全等的特征,线段的倍分是相似的特征以及相似与三角函数的结合。根据边边角不能得到两个三角形全等。
易错点5:
两个角相等和平行经常是相似的基本构成要素,以及相似三角形对应高之比等于相似比,对应线段成比例,面积之比等于相似比的平方。
易错点6:
等腰(等边)三角形的定义以及等腰(等边)三角形的判定与性质,运用等腰(等边)三角形的判定与性质解决有关计算与证明问题,这里需注意分类讨论思想的渗入。
易错点7:
运用勾股定理及其逆定理计算线段的长,证明线段的数量关系,解决与面积有关的问题以及简单的实际问题。
易错点8:
将直角三角形,平面直角坐标系,函数,开放性问题,探索性问题结合在一起综合运用探究各种解题方法。
易错点9:
中点,中线,中位线,一半定理的归纳以及各自的性质。
易错点10:
直角三角形判定方法:三角形面积的确定与底上的高(特别是钝角三角形)。
易错点11:
三角函数的定义中对应线段的比经常出错以及特殊角的三角函数值。
5、四边形
易错点1:
平行四边形的性质和判定,如何灵活、恰当地应用。三角形的稳定性与四边形不稳定性。
易错点2:
平行四边形注意与三角形面积求法的区分。平行四边形与特殊平行四边形之间的转化关系。
易错点3:
运用平行四边形是中心对称图形,过对称中心的直线把它分成面积相等的两部分。对角线将四边形分成面积相等的四部分。
易错点4:
平行四边形中运用全等三角形和相似三角形的知识解题,突出转化思想的渗透。
易错点5:
矩形、菱形、正方形的概念、性质、判定及它们之间的关系,主要考查边长、对角线长、面积等的计算。矩形与正方形的折叠。
易错点6:
四边形中的翻折、平移、旋转、剪拼等动手操作性问题,掌握其中的不变与旋转一些性质。
易错点7:
梯形问题的主要做辅助线的方法。
6、圆
易错点1:
对弧、弦、圆周角等概念理解不深刻,特别是弦所对的圆周角有两种情况要特别注意,两条弦之间的距离也要考虑两种情况。
易错点2:
对垂径定理的理解不够,不会正确添加辅助线运用直角三角形进行解题。
易错点3:
对切线的定义及性质理解不深,不能准确的利用切线的性质进行解题以及对切线的判定方法两种方法使用不熟练。
易错点4:
圆周角定理是重点,同弧(等弧)所对的圆周角相等,直径所对的圆周角是直角。直角的圆周角所对的弦是直径,一条弧所对的圆周角等于它所对的圆心角的一半。
易错点5:
几个公式一定要牢记:三角形、平行四边形、菱形、矩形、正方形、梯形、圆的面积公式,圆周长公式,弧长,扇形面积,圆锥的侧面积以及全面积以及弧长与底面周长,母线长与扇形的半径之间的转化关系。
7、对称图形
易错点1:
轴对称、轴对称图形,及中心对称、中心对称图形概念和性质把握不准。
易错点2:
图形的轴对称或旋转问题,要充分运用其性质解题,即运用图形的“不变性”,在轴对称和旋转中角的大小不变,线段的长短不变。
易错点3:
将轴对称与全等混淆,关于直线对称与关于轴对称混淆。
8、统计与概率
易错点1:
中位数、众数、平均数的有关概念理解不透彻,错求中位数、众数、平均数。
易错点2:
在从统计图获取信息时,一定要先判断统计图的准确性。不规则的统计图往往使人产生错觉,得到不准确的信息。
易错点3:
对普查与抽样调查的概念及它们的适用范围不清楚,造成错误。
易错点4:
极差、方差的概念理解不清晰,从而不能正确求出一组数据的极差、方差。
易错点5:
概率与频率的意义理解不清晰,不能正确求出事件的概率。
易错点6:
平均数、加权平均数、方差公式,扇形统计图的圆心角与频率之间的关系,频数、频率、总数之间的关系。
易错点7:
求概率的方法:
(1)简单事件
(2)两步以及两步以上的简单事件求概率的方法:利用树状或者列表表示各种等可能的情况与事件的可能性的比值。
(3)复杂事件求概率的方法运用频率估算概率。
易错点8:
判断是否公平的方法运用概率是否相等,关注频率与概率的整合。
中考数学压轴题解题方法
1 .分类讨论题
分类讨论在数学题中经常以最后压轴题的方式出现,以下几点是需要大家注意分类讨论的:
1、熟知直角三角形的性质,等腰三角形的性质以及圆的对称性,根据图形的特殊性质,找准讨论对象,逐一解决。在探讨等腰或直角三角形存在时,一定要按照一定的原则,不要遗漏,最后要综合。
2、讨论点的位置一定要看清点所在的范围,是在直线上,还是在射线或者线段上。
3、图形的对应关系多涉及到三角形的全等或相似问题,对其中可能出现的有关角、边的可能对应情况加以分类讨论。
4、代数式变形中如果有绝对值、平方时,里面的数开出来要注意正负号的取舍。
5、考查点的取值情况或范围。这部分多是考查自变量的取值范围的分类,解题中应十分注意性质、定理的使用条件及范围。
6、函数题目中如果说函数图象与坐标轴有交点,那么一定要讨论这个交点是和哪一个坐标轴的哪一半轴的交点。
7、由动点问题引出的函数关系,当运动方式改变后(比如从一条线段移动到另一条线段)时,所写的函数应该进行分段讨论。
值得注意的是:在列出所有需要讨论的可能性之后,要仔细审查是否每种可能性都会存在,是否有需要舍去的。
最常见的就是一元二次方程如果有两个不等实根,那么我们就要看看是不是这两个根都能保留。
2. 四个秘诀
切入点一:做不出、找相似,有相似、用相似
压轴题牵涉到的知识点较多,知识转化的难度较高。学生往往不知道该怎样入手,这时往往应根据题意去寻找相似三角形。
切入点二:构造定理所需的图形或基本图形
在解决问题的过程中,有时添加辅助线是必不可少的,几乎都遵循这样一个原则:构造定理所需的图形或构造一些常见的基本图形。
切入点三:紧扣不变量
在图形运动变化时,图形的位置、大小、方向可能都有所改变,但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生改变。
切入点四:在题目中寻找多解的信息
图形在运动变化,可能满足条件的情形不止一种,也就是通常所说的两解或多解,如何避免漏解也是一个令考生头痛的问题,其实多解的信息在题目中就可以找到,这就需要我们深度的挖掘题干,实际上就是反复认真的审题。
3.答题技巧
1、定位准确防止 “捡芝麻丢西瓜”
在心中一定要给压轴题或几个“难点”一个时间上的限制,如果超过你设置的上限,必须要停止,回头认真检查前面的题,尽量要保证选择、填空万无一失,前面的解答题尽可能的检查一遍。
2、解数学压轴题做一问是一问
第一问对绝大多数同学来说,不是问题;如果第一小问不会解,切忌不可轻易放弃第二小问。
过程会多少写多少,因为数学解答题是按步骤给分的,字迹要工整,布局要合理;
尽量多用几何知识,少用代数计算,尽量用三角函数,少在直角三角形中使用相似三角形的性质。
4.压轴题技巧
纵观广西各省的中考数学试卷,数学综合题关键是第25题和26题,我们不妨把它分为函数型综合题和几何型综合题。
(一)函数型综合题
是先给定直角坐标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质。
初中已知函数有:
①一次函数(包括正比例函数)和常值函数,它们所对应的图像是直线;
②反比例函数,它所对应的图像是双曲线;
③二次函数,它所对应的图像是抛物线。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。
(二)几何型综合题
先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化。
求对应的(未知)函数的解析式(即在没有求出之前不知道函数解析式的形式是什么)和求函数的定义域,最后根据所求的函数关系进行探索研究,一般有:
在什么条件下图形是等腰三角形、直角三角形、四边形是平行四边形、菱形、梯形等;
探索两个三角形满足什么条件相似等;
探究线段之间的位置关系等;
探索面积之间满足一定关系求x的值等和直线(圆)与圆的相切时求自变量的值等。
求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。
一般有直接法(直接列出含有x和y的方程)和复合法(列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y=f(x)的形式),当然还有参数法,这个已超出初中数学教学要求。
找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求定义域主要是寻找图形的特殊位置(极限位置)和根据解析式求解。
而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。
易错知识
1、数与式
易错点1:
有理数、无理数以及实数的有关概念理解错误,相反数、倒数、绝对值的意义概念混淆。弄不清绝对值与数的分类。选择题考得比较多。
易错点2:
关于实数的运算,要掌握好与实数的有关概念、性质,灵活地运用各种运算律,关键是把好符号关;在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误。
易错点3:
平方根、算术平方根、立方根的区别。
易错点4:
分式值为零时易忽略分母不能为零。
易错点5:
分式运算要注意运算法则和符号的变化。当分式的分子分母是多项式时要先因式分解,因式分解要分解到不能再分解为止,注意计算方法,不能去分母,把分式化为最简分式。填空题易考。
易错点6:
非负数的性质:几个非负数的和为0,每个式子都为0;整体代入法;完全平方式。
易错点7:
计算第一题易考。五个基本数的计算:0指数,三角函数,绝对值,负指数,二次根式的化简。
易错点8:
科学记数法,精确度。这个知道就好!
易错点9:
代入求值要使式子有意义。各种数式的计算方法要掌握,一定要注意计算顺序。
2、方程(组)与不等式(组)
易错点1:
各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。
易错点2:
运用等式性质时,两边同除以一个数必须要注意不能为O的情况,还要关注解方程与方程组的基本思想。消元降次的主要陷阱在于消除了一个带X公因式时回头检验!
易错点3:
运用不等式的性质3时,容易忘记改不变号的方向而导致结果出错。
易错点4:
关于一元二次方程的取值范围的题目易忽视二次项系数不为0。
易错点5:
关于一元一次不等式组有解、无解的条件易忽视相等的情况。
易错点6:
解分式方程时首要步骤去分母,分数相相当于括号,易忘记根检验,导致运算结果出错。
易错点7:
不等式(组)的解得问题要先确定解集,确定解集的方法运用数轴。
易错点8:
利用函数图象求不等式的解集和方程的解。
3、函数
易错点1:
各个待定系数表示的的意义。
易错点2:
熟练掌握各种函数解析式的求法,有几个的待定系数就要几个点值。
易错点3:
利用图像求不等式的解集和方程(组)的解,利用图像性质确定增减性。
易错点4:
两个变量利用函数模型解实际问题,注意区别方程、函数、不等式模型解决不等领域的问题。
易错点5:
利用函数图象进行分类(平行四边形、相似、直角三角形、等腰三角形)以及分类的求解方法。
易错点6:
与坐标轴交点坐标一定要会求。面积最大值的求解方法,距离之和的最小值的求解方法,距离之差最大值的求解方法。
易错点7:
数形结合思想方法的运用,还应注意结合图像性质解题。函数图象与图形结合学会从复杂图形分解为简单图形的方法,图形为图像提供数据或者图像为图形提供数据。
易错点8:
自变量的取值范围有:二次根式的被开方数是非负数,分式的分母不为0,0指数底数不为0,其它都是全体实数。
4、三角形
易错点1:
三角形的概念以及三角形的角平分线,中线,高线的特征与区别。
易错点2:
三角形三边之间的不等关系,注意其中的“任何两边”。求最短距离的方法。
易错点3:
三角形的内角和,三角形的分类与三角形内外角性质,特别关注外角性质中的“不相邻”。
易错点4:
全等形,全等三角形及其性质,三角形全等判定。着重学会论证三角形全等,三角形相似与全等的综合运用以及线段相等是全等的特征,线段的倍分是相似的特征以及相似与三角函数的结合。根据边边角不能得到两个三角形全等。
易错点5:
两个角相等和平行经常是相似的基本构成要素,以及相似三角形对应高之比等于相似比,对应线段成比例,面积之比等于相似比的平方。
易错点6:
等腰(等边)三角形的定义以及等腰(等边)三角形的判定与性质,运用等腰(等边)三角形的判定与性质解决有关计算与证明问题,这里需注意分类讨论思想的渗入。
易错点7:
运用勾股定理及其逆定理计算线段的长,证明线段的数量关系,解决与面积有关的问题以及简单的实际问题。
易错点8:
将直角三角形,平面直角坐标系,函数,开放性问题,探索性问题结合在一起综合运用探究各种解题方法。
易错点9:
中点,中线,中位线,一半定理的归纳以及各自的性质。
易错点10:
直角三角形判定方法:三角形面积的确定与底上的高(特别是钝角三角形)。
易错点11:
三角函数的定义中对应线段的比经常出错以及特殊角的三角函数值。
5、四边形
易错点1:
平行四边形的性质和判定,如何灵活、恰当地应用。三角形的稳定性与四边形不稳定性。
易错点2:
平行四边形注意与三角形面积求法的区分。平行四边形与特殊平行四边形之间的转化关系。
易错点3:
运用平行四边形是中心对称图形,过对称中心的直线把它分成面积相等的两部分。对角线将四边形分成面积相等的四部分。
易错点4:
平行四边形中运用全等三角形和相似三角形的知识解题,突出转化思想的渗透。
易错点5:
矩形、菱形、正方形的概念、性质、判定及它们之间的关系,主要考查边长、对角线长、面积等的计算。矩形与正方形的折叠。
易错点6:
四边形中的翻折、平移、旋转、剪拼等动手操作性问题,掌握其中的不变与旋转一些性质。
易错点7:
梯形问题的主要做辅助线的方法。
6、圆
易错点1:
对弧、弦、圆周角等概念理解不深刻,特别是弦所对的圆周角有两种情况要特别注意,两条弦之间的距离也要考虑两种情况。
易错点2:
对垂径定理的理解不够,不会正确添加辅助线运用直角三角形进行解题。
易错点3:
对切线的定义及性质理解不深,不能准确的利用切线的性质进行解题以及对切线的判定方法两种方法使用不熟练。
易错点4:
圆周角定理是重点,同弧(等弧)所对的圆周角相等,直径所对的圆周角是直角。直角的圆周角所对的弦是直径,一条弧所对的圆周角等于它所对的圆心角的一半。
易错点5:
几个公式一定要牢记:三角形、平行四边形、菱形、矩形、正方形、梯形、圆的面积公式,圆周长公式,弧长,扇形面积,圆锥的侧面积以及全面积以及弧长与底面周长,母线长与扇形的半径之间的转化关系。
7、对称图形
易错点1:
轴对称、轴对称图形,及中心对称、中心对称图形概念和性质把握不准。
易错点2:
图形的轴对称或旋转问题,要充分运用其性质解题,即运用图形的“不变性”,在轴对称和旋转中角的大小不变,线段的长短不变。
易错点3:
将轴对称与全等混淆,关于直线对称与关于轴对称混淆。
8、统计与概率
易错点1:
中位数、众数、平均数的有关概念理解不透彻,错求中位数、众数、平均数。
易错点2:
在从统计图获取信息时,一定要先判断统计图的准确性。不规则的统计图往往使人产生错觉,得到不准确的信息。
易错点3:
对普查与抽样调查的概念及它们的适用范围不清楚,造成错误。
易错点4:
极差、方差的概念理解不清晰,从而不能正确求出一组数据的极差、方差。
易错点5:
概率与频率的意义理解不清晰,不能正确求出事件的概率。
易错点6:
平均数、加权平均数、方差公式,扇形统计图的圆心角与频率之间的关系,频数、频率、总数之间的关系。
易错点7:
求概率的方法:
(1)简单事件
(2)两步以及两步以上的简单事件求概率的方法:利用树状或者列表表示各种等可能的情况与事件的可能性的比值。
(3)复杂事件求概率的方法运用频率估算概率。
易错点8:
判断是否公平的方法运用概率是否相等,关注频率与概率的整合。
中考数学压轴题解题方法
1 .分类讨论题
分类讨论在数学题中经常以最后压轴题的方式出现,以下几点是需要大家注意分类讨论的:
1、熟知直角三角形的性质,等腰三角形的性质以及圆的对称性,根据图形的特殊性质,找准讨论对象,逐一解决。在探讨等腰或直角三角形存在时,一定要按照一定的原则,不要遗漏,最后要综合。
2、讨论点的位置一定要看清点所在的范围,是在直线上,还是在射线或者线段上。
3、图形的对应关系多涉及到三角形的全等或相似问题,对其中可能出现的有关角、边的可能对应情况加以分类讨论。
4、代数式变形中如果有绝对值、平方时,里面的数开出来要注意正负号的取舍。
5、考查点的取值情况或范围。这部分多是考查自变量的取值范围的分类,解题中应十分注意性质、定理的使用条件及范围。
6、函数题目中如果说函数图象与坐标轴有交点,那么一定要讨论这个交点是和哪一个坐标轴的哪一半轴的交点。
7、由动点问题引出的函数关系,当运动方式改变后(比如从一条线段移动到另一条线段)时,所写的函数应该进行分段讨论。
值得注意的是:在列出所有需要讨论的可能性之后,要仔细审查是否每种可能性都会存在,是否有需要舍去的。
最常见的就是一元二次方程如果有两个不等实根,那么我们就要看看是不是这两个根都能保留。
2. 四个秘诀
切入点一:做不出、找相似,有相似、用相似
压轴题牵涉到的知识点较多,知识转化的难度较高。学生往往不知道该怎样入手,这时往往应根据题意去寻找相似三角形。
切入点二:构造定理所需的图形或基本图形
在解决问题的过程中,有时添加辅助线是必不可少的,几乎都遵循这样一个原则:构造定理所需的图形或构造一些常见的基本图形。
切入点三:紧扣不变量
在图形运动变化时,图形的位置、大小、方向可能都有所改变,但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生改变。
切入点四:在题目中寻找多解的信息
图形在运动变化,可能满足条件的情形不止一种,也就是通常所说的两解或多解,如何避免漏解也是一个令考生头痛的问题,其实多解的信息在题目中就可以找到,这就需要我们深度的挖掘题干,实际上就是反复认真的审题。
3.答题技巧
1、定位准确防止 “捡芝麻丢西瓜”
在心中一定要给压轴题或几个“难点”一个时间上的限制,如果超过你设置的上限,必须要停止,回头认真检查前面的题,尽量要保证选择、填空万无一失,前面的解答题尽可能的检查一遍。
2、解数学压轴题做一问是一问
第一问对绝大多数同学来说,不是问题;如果第一小问不会解,切忌不可轻易放弃第二小问。
过程会多少写多少,因为数学解答题是按步骤给分的,字迹要工整,布局要合理;
尽量多用几何知识,少用代数计算,尽量用三角函数,少在直角三角形中使用相似三角形的性质。
4.压轴题技巧
纵观广西各省的中考数学试卷,数学综合题关键是第25题和26题,我们不妨把它分为函数型综合题和几何型综合题。
(一)函数型综合题
是先给定直角坐标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质。
初中已知函数有:
①一次函数(包括正比例函数)和常值函数,它们所对应的图像是直线;
②反比例函数,它所对应的图像是双曲线;
③二次函数,它所对应的图像是抛物线。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。
(二)几何型综合题
先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化。
求对应的(未知)函数的解析式(即在没有求出之前不知道函数解析式的形式是什么)和求函数的定义域,最后根据所求的函数关系进行探索研究,一般有:
在什么条件下图形是等腰三角形、直角三角形、四边形是平行四边形、菱形、梯形等;
探索两个三角形满足什么条件相似等;
探究线段之间的位置关系等;
探索面积之间满足一定关系求x的值等和直线(圆)与圆的相切时求自变量的值等。
求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。
一般有直接法(直接列出含有x和y的方程)和复合法(列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y=f(x)的形式),当然还有参数法,这个已超出初中数学教学要求。
找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求定义域主要是寻找图形的特殊位置(极限位置)和根据解析式求解。
而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。
相关资料
更多