小学数学人教版四年级下册5 三角形综合与测试课后练习题
展开北京市东城区西中街小学 崔 钰
一、填空
1.由三条( )围成的图形叫做三角形。一个三角形有( )条边,( )个角,( )个顶点。三角形具有( )性。
考查目的:三角形的特点和特性。
答案:线段,三,三,三,稳定。
解析:由三条线段围成的图形叫做三角形。一个三角形有三条边,三个角,三个顶点。三角形具有稳定性。
2.三角形按角分类有( )、( )和( );按边分类有( )三角形和( )三角形这两种特殊的三角形。
考查目的:三角形的分类。
答案:钝角三角形,直角三角形,锐角三角形,等边,等腰。
解析:三角形按角分类有直角三角形、钝角三角形和锐角三角形;按边分类有等腰三角形和等边三角形两种特殊的三角形。
3.一个等腰三角形两条边的长度分别是3厘米、6厘米,这个等腰三角形的周长是( )厘米。
考查目的:等腰三角形的特点和三角形三边关系的综合应用。
答案:15厘米。
解析:根据等腰三角形的特点可知,等腰三角形的两腰相等,即第三条边可能是3厘米,也可能是6厘米。到底是哪一个,还是都可以,还需要根据三角形的三边关系进一步判断,如果是3厘米,3+3=6,与第三边相等,所以不能是3厘米;如果是6厘米,3+6=9>6,所以第三条边是6厘米。此时,三角形的周长是3+6+6=15(厘米)。
4.把一个大三角形分成两个小三角形,每个小三角形的内角和是( )。
考查目的:三角形的内角和。
答案:180°。
解析:三角形内角和与三角形的大小,形状无关。
5.一个等腰三角形,一个底角是顶角的2倍,这个三角形顶角度数是( )°,底角度数是( )°。
考查目的:综合应用三角形的内角和,等腰三角形的特点等知识解决问题。
答案:36,72。
解析:等腰三角形的两个底角相等,一个底角是顶角的2倍,可以把顶角看成1份,底角就是这样的2份,另一个底角也是2份,这个等腰三角形的内角和一共有1+2+2=5(份),三角形内角和是180°,所以,这个等腰三角形的顶角是180°÷5=36°,底角是36°×2=72°。
二、选择
1.下面第( )组中的三根小棒不能拼成一个三角形。
考查目的:三角形的三边关系。
答案:A。
解析:三角形任意两边的和大于第三边。在判断时,只要两根较短的小棒长度之和大于第三边,那么这三根小棒就能拼成三角形。选项A中,两根较短的小棒之和是5厘米,与第三根小棒长度相等,所以不能拼成三角形;选项B中,三根小棒长度相等, 任意两根之和一定大于第三根,所以能拼成三角形;选项C中,两根较短的小棒之和是7厘米,大于第三根小棒的5厘米,所以也能拼成三角形。
2.一个三角形的两边长分别为3 cm和7 cm,则此三角形的第三边的长可能是( )。
A.3 cm B.4 cm C.7 cm
考查目的:应用三角形的三边关系解决问题。
答案:C。
解析:三角形任意两边的和大于第三边。可以把每一个选项先看作是第三边,再算一算此时这三条边是否满足三角形的三边关系。选项A,3+3=6<7,所以不是;选项B,3+4=7,与第三边相等,所以不是;选项C,3+7=10>7,可以。
3.下面各组角中,第( )组中的三个角能组成三角形。
A.60°,70°,90° B.50°,50°,50° C.80°,95°,5°
考查目的:三角形的内角和。
答案:C。
解析:依据三角形内角和是180°进行判断。选项A中三个角的和是220°,所以这三个角不能拼成三角形,也可以这么想,如果这三个角能拼成三角形,那一定是直角三角形,直角三角形中两个锐角之和等于90°,而在这三个角中,两个锐角之和是130°,所以这三个角不能拼成三角形;选项B中三个角的和是150°,所以不能拼成三角形,也可以想,三个角都相等的三角形中每个角应该是60°,而这三个角全是50°,所以不能拼成三角形;选项C中三个角的和是180°,所以能拼成三角形。
4.钝角三角形的两个锐角之和( )90°。
A.大于 B.小于 C.等于
考查目的:三角形内角和和钝角三角形的特征。
答案:B。
解析:三角形的内角和是180°,钝角三角形中的钝角大于90°,所以两个锐角的和一定小于90°。
三、解答
1.画出下面三角形指定边上的高。
考查目的:三角形高的含义,画三角形高的方法。
答案:如下图。
解析:利用三角板上的两条直角边来画高。先用三角板上的一条直角边与三角形的底重合,沿着底的方向平移三角板,直到另一条直角边经过底所对的顶点,从顶点起沿这条直角边画底的垂线,顶点到垂足之间的线段就是要画的高,最后要标注直角符号。
2.明明用小木棍围成的篱笆稳固吗?如果不稳固,你能帮他添上一根小木棍变得稳固吗?试着画一画。
考查目的:三角形稳定性的应用。
答案:不稳固;连接正方形的对角线,形成三角形。
解析:明明用小木棍围成的篱笆是正方形的,不稳定,而再用一根小木棍钉在正方形的一条对角线上,就形成了三角形,三角形具有稳定性,篱笆就不易变形了。
3.已知一个三角形(每条边长都是整厘米数)的周长是20厘米,它的最长边的长度最大是几厘米?
考查目的:应用三角形的三边关系解决问题。
答案:9厘米。
解析:三角形任意两边之和大于第三边。可以把三角形的周长分为两部分,一部分是两条较短边长度之和,另一部分是最长边,且两条较短边长度之和应大于最长边,20÷2=10(厘米),此时,两部分长度相等,最长边应短一些,所以是10-1=9(厘米),另两边之和是20-9=11(厘米),11>9,所以,最长边是9厘米。
4.某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块形状完全一样的玻璃,那么最省事的办法是带第( )块去。这是因为。
考查目的:准确理解三角形的稳定性。
答案:③,三角形具有稳定性。
解析:三角形具有稳定性,在生活中,篮球架、自行车等地方都会看到三角形,它还有一个层面的含义就是当三角形的三条边或三个角确定了,这个三角形也就确定了,不会再出现其他样子的三角形。由这层含义的理解再看图中的三片碎玻璃,第③块上有两个角,根据这两个角就可以确定第三个角,这个三角形的形状也就随之确定了。
5.等腰三角形的一个内角是60°,其他两个内角各是多少度?这是( )三角形。
考查目的:综合三角形内角和、等腰三角形的特点及等边三角形的特点解决问题。
答案:60°,60°,等边。
解析:题目没有明确说明已知的60°角是这个等腰三角形的顶角还是底角,所以,要分两种情况进行研究。第一种情况:已知角是顶角,则根据等腰三角形角的特点,可以求出它的底角是(180°-60°)÷2=60°,所以,这个等腰三角形的两个底角是60°,它的三个角都是60°,它是等边三角形;第二种情况:已知角是底角,根据等腰三角形角的特点,可求出它的顶角是180°-60°×2=60°,这个等腰三角形的顶角是60°,它的三个角都是60°,它是等边三角形。综合以上两种情况,可以得出结论:其他两个内角都是60°,这是等边三角形。
小学数学人教版四年级下册1 四则运算综合与测试当堂检测题: 这是一份小学数学人教版四年级下册1 四则运算综合与测试当堂检测题,共4页。试卷主要包含了填空,选择,解答等内容,欢迎下载使用。
人教版四年级下册2 观察物体(二)当堂检测题: 这是一份人教版四年级下册2 观察物体(二)当堂检测题,共6页。试卷主要包含了填空,选择,解答等内容,欢迎下载使用。
2021学年9 数学广角 ——鸡兔同笼随堂练习题: 这是一份2021学年9 数学广角 ——鸡兔同笼随堂练习题,共5页。试卷主要包含了选择,填空,解答等内容,欢迎下载使用。