- 2019年江苏省高考数学精编试卷答案解析 试卷 90 次下载
- 2019年浙江省高考数学精编试卷答案解析 试卷 108 次下载
- 2018年高考理科数学(新课标2卷)精编试卷答案解析 试卷 141 次下载
- 2018年高考理科数学(新课标3卷)精编试卷答案解析 试卷 123 次下载
- 2018年高考文科数学(新课标I卷)精编试卷答案解析 试卷 110 次下载
2018年高考理科数学(新课标1卷)精编答案解析
展开理科数学
注意事项:
1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设,则
A. B. C. D.
2. 已知集合,则
A B.
C. D.
3. 某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:
则下面结论中不正确的是
A. 新农村建设后,种植收入减少
B. 新农村建设后,其他收入增加了一倍以上
C. 新农村建设后,养殖收入增加了一倍
D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
4. 设为等差数列的前项和,若,,则
A. B. C. D.
5. 设函数.若为奇函数,则曲线在点处的切线方程为( )
A. B. C. D.
6. 在△中,为边上的中线,为的中点,则
A. B.
C. D.
7. 某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为( )
A. B. C. D. 2
8. 设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为的直线与C交于M,N两点,则=
A. 5B. 6C. 7D. 8
9. 已知函数.若g(x)存在2个零点,则a的取值范围是
A. [–1,0)B. [0,+∞)C. [–1,+∞)D. [1,+∞)
10. 如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为II,其余部分记为III.在整个图形中随机取一点,此点取自I,II,III的概率分别记为p1,p2,p3,则
A. p1=p2B. p1=p3
C. p2=p3D. p1=p2+p3
11. 已知双曲线C:,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.若OMN为直角三角形,则|MN|=
A B. 3C. D. 4
12. 已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13. 若,满足约束条件,则的最大值为_____________.
14. 记为数列的前项和,若,则_____________.
15. 从位女生,位男生中选人参加科技比赛,且至少有位女生入选,则不同的选法共有_____________种.(用数字填写答案)
16. 已知函数,则的最小值是_____________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。
(一)必考题:60分。
17. 在平面四边形中,,,,.
(1)求;
(2)若,求
18. 如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且.
(1)证明:平面平面;
(2)求与平面所成角的正弦值.
19. 设椭圆的右焦点为,过的直线与交于两点,点的坐标为.
(1)当与轴垂直时,求直线的方程;
(2)设为坐标原点,证明:.
20. 某工厂的某种产品成箱包装,每箱件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为,且各件产品是否为不合格品相互独立.
(1)记件产品中恰有件不合格品的概率为,求的最大值点;
(2)现对一箱产品检验了件,结果恰有件不合格品,以(1)中确定的作为的值.已知每件产品的检验费用为元,若有不合格品进入用户手中,则工厂要对每件不合格品支付元的赔偿费用.
(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为,求;
(ii)以检验费用与赔偿费用和期望值为决策依据,是否该对这箱余下的所有产品作检验?
21. 已知函数.
(1)讨论的单调性;
(2)若存在两个极值点,证明:.
(二)选考题:共10分。请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。
22.
在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求的直角坐标方程;
(2)若与有且仅有三个公共点,求的方程.
23. 已知.
(1)当时,求不等式的解集;
(2)若时不等式成立,求的取值范围.
2018年高考理科数学(新课标3卷)精编答案解析: 这是一份2018年高考理科数学(新课标3卷)精编答案解析,文件包含2018年高考理科数学新课标3卷精编原卷doc、2018年高考理科数学新课标3卷精编答案解析doc等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。
2018年高考理科数学(新课标2卷)精编答案解析: 这是一份2018年高考理科数学(新课标2卷)精编答案解析,文件包含2018年高考理科数学新课标2卷精编原卷doc、2018年高考理科数学新课标2卷精编答案解析doc等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。
2019年高考数学试卷(理科)(新课标3)精编答案解析: 这是一份2019年高考数学试卷(理科)(新课标3)精编答案解析,文件包含2019年高考数学试卷理科新课标3精编原卷doc、2019年高考数学试卷理科新课标3精编答案解析doc等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。