开学活动
搜索
    上传资料 赚现金

    2018年北师大版小升初数学复习卷(13)

    2018年北师大版小升初数学复习卷(13)第1页
    2018年北师大版小升初数学复习卷(13)第2页
    2018年北师大版小升初数学复习卷(13)第3页
    还剩19页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2018年北师大版小升初数学复习卷(13)

    展开

    这是一份2018年北师大版小升初数学复习卷(13),共22页。试卷主要包含了解答题等内容,欢迎下载使用。
    2018年北师大版小升初数学复习卷(13)
    一、解答题(共10小题,满分0分)
    1.(2012•张家港市自主招生)甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?
    2.(2012•张家港市自主招生)有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?
    3.(2010•中山市)某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3天可以完成,需支付1500元;由甲、丙两队承包,2天可以完成,需支付1600元.在保证一星期内完成的前提下,选择哪个队单独承包费用最少?
    4.(2011•岳麓区校级自主招生)一个圆柱体容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比.
    5.甲乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多,然后甲、乙分别按获得80%和50%的利润定价出售.两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装   套.
    6.有甲、乙两根水管,分别同时给A、B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2小时,A,B两池中注入的水之和恰好是一池.这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?
    7.(2013•锦江区校级自主招生)小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间?
    8.甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到达C地.那么,乙车出发后   分钟时,甲车就超过乙车.
    9.(2013•广州模拟)甲、乙两辆清洁车执行东、西城间的公路清扫任务.甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?
    10.今有重量为3吨的集装箱4个,重量为2.5吨的集装箱5个,重量为1.5吨的集装箱14个,重量为1吨的集装箱7个.那么最少需要用多少辆载重量为4.5吨的汽车可以一次全部运走集装箱?

    2018年北师大版小升初数学复习卷(13)
    参考答案与试题解析
    一、解答题(共10小题,满分0分)
    1.(2012•张家港市自主招生)甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?
    【考点】N5:植树问题.菁优网版权所有
    【分析】根据A地要植900棵,B地要植1250棵.甲、乙、丙每天分别能植树24,30,32棵,可以求出植树的总棵数,甲、乙、丙每天植树的总棵数,以及需要植树的天数,再根据甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树,两块地同时开始同时结束,可以求出需要乙在A地植树的棵数,由此即可求出答案.
    【解答】解:总棵数是:900+1250=2150(棵),
    每天可以植树:24+30+32=86(棵),
    需要种的天数是:2150÷86=25(天),
    甲25天完成的棵数:24×25=600(棵),
    那么乙要再A地植树的棵数:900﹣600=300(棵),
    即做了的天数:300÷30=10(天),
    10+1=11(天),
    即第11天从A地转到B地;
    答:两块地同时开始同时结束,乙应在开始后第11天从A地转到B地.
    【点评】解答此题的关键是,根据题意,找出数量关系,确定解答顺序,列式计算即可.
    2.(2012•张家港市自主招生)有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?
    【考点】N9:牛吃草问题.菁优网版权所有
    【分析】这是一道比较复杂的牛吃草问题.把每头牛每天吃的草看作1份,因为第一块草地5亩面积原有草量+5亩面积30天长的草=10×30=300份,所以每亩面积原有草量和每亩面积30天长的草是300÷5=60份;因为第二块草地15亩面积原有草量+15亩面积45天长的草=28×45=1260份,所以每亩面积原有草量和每亩面积45天长的草是1260÷15=84份,所以45﹣30=15天,每亩面积长84﹣60=24份;则每亩面积每天长24÷15=1.6份.所以,每亩原有草量60﹣30×1.6=12份,第三块地面积是24亩,所以每天要长1.6×24=38.4份,原有草就有24×12=288份,新生长的每天就要用38.4头牛去吃,其余的牛每天去吃原有的草,那么原有的草就要够吃80天,因此288÷80=3.6头牛所以,一共需要38.4+3.6=42头牛来吃.
    【解答】解:设每头牛每天的吃草量为1,则每亩30天的总草量为:10×30÷5=60;
    每亩45天的总草量为:28×45÷15=84;
    那么每亩每天的新生长草量为(84﹣60)÷(45﹣30)=1.6;
    每亩原有草量为:60﹣1.6×30=12;
    那么24亩原有草量为:12×24=288;
    24亩80天新长草量为24×1.6×80=3072;
    24亩80天共有草量3072+288=3360;
    所以有3360÷80=42(头).
    答:第三块地可供42头牛吃80天.
    【点评】本题为典型的牛吃草问题,要根据“牛吃的草量﹣﹣生长的草量=消耗原有草量”这个关系式认真分析解决.
    3.(2010•中山市)某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3天可以完成,需支付1500元;由甲、丙两队承包,2天可以完成,需支付1600元.在保证一星期内完成的前提下,选择哪个队单独承包费用最少?
    【考点】L9:工程问题.菁优网版权所有
    【分析】由题意我们想到通过计算甲乙丙合干的速度及费用,减去其中两队合作时的用时和费用,就等于另外一个队单独干时的用时和费用,来分别求出他们各自单干时的用时和费用.
    【解答】解:由题意得:
    甲乙合作一天完成1÷2.4,支付1800÷2.4=750元,
    乙丙合作一天完成1÷(3),支付1500400元,
    甲丙合作一天完成1÷(2),支付1600560元,
    三人合作一天完成()÷2,
    三人合作一天支付(750+400+560)÷2=855元,
    甲单独做每天完成,支付855﹣400=455元,
    乙单独做每天完成,支付855﹣560=295元,
    丙单独做每天完成,支付855﹣750=105元,
    所以通过比较,丙队单独承包费用最少,但是要用10天,不符合题意舍掉.
    所以选择乙来做,在16天完工,且只用295×6=1770元费用最少.
    答:在保证一星期内完成的前提下,选择乙队单独承包费用最少.
    【点评】本题是一个难度较高的工程问题应用题,解题关键是通过计算甲乙丙合干的速度及费用,来分别求出他们各自单干时的用时和费用.
    4.(2011•岳麓区校级自主招生)一个圆柱体容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比.
    【考点】AC:长方体和正方体的体积;AD:圆柱的侧面积、表面积和体积.菁优网版权所有
    【分析】根据题意,可把这个容器分成上下两部分,下面的部分与长方体等高(20厘米),上面部分的高为(50﹣20)厘米;根据灌水时间关系可以发现,上面部分的高是30厘米,用18分钟;下面部分的高是20厘米,只用了3分钟,原因是下面含长方体的体积;据此解答.
    【解答】解:容器上面部分的高是:50﹣20=30(厘米);
    容器下面部分的高与上面部分高的比是:20:30=2:3;
    容器下面部分的高是上面部分高的;
    上面部分高30厘米用18分钟,所以下面部分高20厘米应该用:1812分钟;但是只用了3分钟,用9分钟的灌水的体积被长方体占了;
    所以长方体的底面面积和容器底面面积的比是9:12=3:4;
    独特解法:
    (50﹣20):20=3:2,当没有长方体时灌满20厘米就需要时间1812(分),
    所以,长方体的体积就是12﹣3=9(分钟)的水量,因为高度相同,
    所以体积比就等于底面积之比,9:12=3:4.
    【点评】此题数量关系比较复杂,解题的关键是根据灌水时间关系来进行分析解答,这样就化难为简.
    5.甲乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多,然后甲、乙分别按获得80%和50%的利润定价出售.两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装 50 套.
    【考点】LA:利润和利息问题.菁优网版权所有
    【专题】48B:利润与折扣问题.
    【分析】要求甲原来购进这种时装多少套,把甲原来购进这种时装套数看作单位“1”,把甲的套数看作5份,乙的套数比甲套数多,乙即是6份;甲获得的利润是80%×5=4份,乙获得的利润是50%×6=3份;甲比乙多4﹣3=1份,这1份就是10套;所以,甲原来购进了10×5=50套.
    【解答】解:把甲的套数看作5份,乙的套数就是5+56份;
    10÷(5×80%﹣6×50%)×5
    =10÷1×5
    =50(套)
    答:甲原来购进种时装50套.
    故答案为:50.
    【点评】此题较难,解答时应结合题意,把甲的套数看作5份,进而得出乙的套数的份数,然后根据题意,进行分析、解答即可得出答案.
    6.有甲、乙两根水管,分别同时给A、B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2小时,A,B两池中注入的水之和恰好是一池.这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?
    【考点】L9:工程问题.菁优网版权所有
    【分析】把一池水看作单位“1”.由于经过小时共注了一池水,所以甲管注了,乙管注了;
    甲管的注水速度是,乙管的注水速度是;甲管后来的注水速度是(1+25%);用去的时间是小时;乙管注满水池需要15.6小时;还需要注水5.6小时;
    【解答】解:7+5=12,甲:,乙:,
    1÷()[(1+25%)],
    =5.6,
    (小时);
    答:当甲管注满A池时,乙管再经过小时注满B池.
    【点评】此题属于复杂的工程应用题,解答此题的关键是把把一池水看作单位“1”.根据注水量、注水时间和注水速度的关系进行分析,解答即可.
    7.(2013•锦江区校级自主招生)小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间?
    【考点】M2:追及问题.菁优网版权所有
    【分析】设全程为1,则小明从在爸爸追他的这段时间里走了全程的(),爸爸走了全程的(1),则小明和爸爸两人的速度比为:():(1)=2:7,那么步行和骑车的时间比就是7:2,所以小明步行需要5÷(7﹣2)×7=7分钟,则步行完全程需要7分钟.
    【解答】解:步行和骑车的速度比是():(1)=2:7,
    则步行和骑车的时间比就是7:2,
    所以小明步行需要5÷(7﹣2)×7=7(分钟),
    步行完全程需要7(分钟).
    答:小明从家到学校全部步行需要分钟.
    【点评】完成本题的关健是据从爸爸开始追到追上这段时间两人所行的路程求出两人的速度比.
    8.甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到达C地.那么,乙车出发后 27 分钟时,甲车就超过乙车.
    【考点】3K:正、反比例应用题;M2:追及问题.菁优网版权所有
    【分析】据题可知,乙车比甲车多行11﹣7+4=8分钟.说明乙车行完全程需要8÷(1﹣80%)=40分钟,甲车行完全程需要40×80%=32分钟,当乙车行到B地并停留完毕需要40÷2+7=27分钟.甲车在乙车出发后32÷2+11=27分钟到达B地.即在B地甲车追上乙车.
    乙车比甲车早出发11分钟,但是停留了7分钟,那么乙车只比甲车早行了4分钟;最后乙车比甲车迟4分钟到达C地;又多行了4分钟;所以行驶路程的一半时,甲车超越乙车,也就是在B城;当甲车超越乙车时,两车行的路程相等,那么它们的速度与时间成反比;甲车的速度看成1,那么乙车的速度就是80%;用4分钟除以(1﹣80%),就是乙车到达B城的时间.然后再加上7分钟就是甲车到达B城的时间.
    【解答】解:11﹣7=4(分钟)
    4÷(1﹣80%)=20(分钟);
    20+7=27(分钟);
    此时乙车在B地;
    甲车到达B城需要:40×80%÷2=16(分钟);
    也就是乙车出发后的:16+11=27(分钟);
    也就是乙车出发27分钟后甲车和乙车都在B城,此时甲车开始超过乙车.
    答:乙车出发27分钟后甲车超过乙车.
    故答案为:27.
    【点评】本题通过时间之间的关系,得出甲车在B城超过乙车是解决问题的关键,然后根据路程一定,速度和时间的反比关系求解.
    9.(2013•广州模拟)甲、乙两辆清洁车执行东、西城间的公路清扫任务.甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?
    【考点】M1:相遇问题.菁优网版权所有
    【分析】把总路程看做单位“1”,由题干可知,甲车的速度为:,乙车速度为:,求得相遇时间,进一步求出甲车比乙车多清扫的占总路程的几分之几,并由此列式解决问题.
    【解答】解:根据题意可得:甲车的速度为:,乙车速度为:,
    1÷()
    =1
    =1×6
    =6(小时);
    12÷(6)
    =12÷()
    =12
    =12×5
    =60(千米);
    答:两城相距60千米.
    【点评】抓住题干,找出甲乙两车的速度,从而计算出它们共同使用的时间,是解决本题的关键.
    10.今有重量为3吨的集装箱4个,重量为2.5吨的集装箱5个,重量为1.5吨的集装箱14个,重量为1吨的集装箱7个.那么最少需要用多少辆载重量为4.5吨的汽车可以一次全部运走集装箱?
    【考点】33:整数、小数复合应用题.菁优网版权所有
    【分析】因为集装箱不能拆散来装,把这些集装箱都凑成4.5吨来装,列表的方法比较简便易懂,列表解决.
    【解答】解:配装情况如下图:

    4+2+3+1+2=12(辆);
    答:那么最少需要用12辆载重量为4.5吨的汽车可以一次全部运走集装箱.
    【点评】本题的关键是集装箱不能像其他东西那样,把它给拆散来装.因此要考虑分配的问题.

    考点卡片
    1.整数、小数复合应用题
    【知识点归纳】
    1.有两个或两个以上的基本数量关系组成的,用两步或两步以上运算解答的应用题,通常叫做复合应用题.
    2.含有三个已知条件的两步计算的应用题.
    3.运算按照整数和小数的运算法则进行运算即可.

    【命题方向】
    常考题型:
    例1:三年级3个班平均每班有学生40人.其中一班有38人,二班有40人,三班有(  )人.
    A、38 B、40 C、42
    分析:先根据“3个班平均每班有学生40人”求出三年级的总人数是多少,然后用总人数减去一班和二班的人数即是三班的人数是多少.
    解:40×3﹣(38+40)
    =120﹣78,
    =42(人);
    答:三班有42人.
    故选:C.
    点评:先根据3个班的平均数求出总人数是完成本题的关键.

    例2:买10千克大米用25.5元,买4.5千克大米用(  )元.
    A、11.475 B、11.48 C、11.4 D、11.47
    分析:知道买10千克大米用25.5元,可求买1千克大米用多少钱,进而可求买4.5千克大米用多少钱,计算后选出即可.
    解:25.5÷10×4.5
    =2.55×4.5
    =11.475
    ≈11.48(元).
    故选:B.
    点评:此题考查整数、小数复合应用题,先求出每千克大米的钱数,再求4.5千克大米的钱数.
    2.正、反比例应用题
    【知识点归纳】
    正比例和反比例都是两种相关联的量,一种量在变化,另一种量也随着变化.
    正比例:如果这两种量中相对应的两个数的比值(即商)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系,简称正比例.形式如:(一定)
    反比例:如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们之间的关系叫做反比例关系,简称反比例.形式如:xy=k(一定)

    【命题方向】
    常考题型:
    例1:把1.5米长的竹竿直立在地上,量得它的影长是1.2米,同时量得学校的旗杆的影长是6.4米.学校的旗杆高多少米?
    分析:根据题意知道,物体的长度和它的影子的长度的比值一定,即物体的长度和它的影子的长度的成正比例,由此列式解答即可.
    解:设旗杆的高是x米.
    1.5:1.2=x:6.4,
    1.2x=1.5×6.4,
    x=8;
    答:旗杆的高是8米.
    点评:解答此题的关键是,先判断题中的两种相关联的量成何比例,然后找准对应量,列式解答即可.

    例2:用边长15厘米的方砖给教室铺地,需要200块,如果改用边长25厘米的方砖铺地,需要多少块砖?
    分析:教室的面积是不变的,每一块方砖的面积与所需块数的乘积是一定的,即两种量成反比例,由此设出未知数,列出比例式解答即可.
    解:设需要x块砖,由题意得,
    25×25x=15×15×200,
    625x=45000,
    x=45000÷625,
    x=72;
    答:需要72块砖.
    点评:此题首先利用正反比例的意义判定两种量的关系,解答时关键不要把边长当做面积进行计算.
    3.长方体和正方体的体积
    【知识点归纳】
    长方体体积公式:V=abh.(a表示底面的长,b表示底面的宽,h表示高)
    正方体体积公式:V=a3.(a表示棱长)

    【命题方向】
    常考题型:
    例1:一个正方体的棱长扩大3倍,体积扩大(  )倍.
    A、3 B、9 C、27
    分析:正方体的体积等于棱长的立方,它的棱长扩大几倍,则它的体积扩大棱长扩大倍数的立方倍,据此规律可得.
    解:正方体的棱长扩大3倍,它的体积则扩大33=27倍.
    故选:C.
    点评:此题考查正方体的体积及其棱长变化引起体积的变化.

    例2:一只长方体的玻璃缸,长8分米,宽6分米,高4分米,水深2.8分米.如果投入一块棱长为4分米的正方体铁块,缸里的水溢出多少升?
    分析:根据题意知用水的体积加铁块的体积,再减去玻璃缸的容积,就是溢出水的体积.据此解答.
    解:8×6×2.8+4×4×4﹣8×6×4,
    =134.4+64﹣192,
    =6.4(立方分米),
    =6.4(升).
    答:向缸里的水溢出6.4升.
    点评:本题的关键是让学生理解:溢出水的体积=水的体积+铁块的体积﹣玻璃缸的容积,这一数量关系.
    4.圆柱的侧面积、表面积和体积
    【知识点归纳】
    圆柱的侧面积=底面的周长×高,用字母表示:
    S侧=Ch(C表示底面的周长,h表示圆柱的高),或S侧=2πrh
    圆柱的底面积=πr2
    圆柱的表面积=侧面积+两个底面积,用字母表示:
    S表=2πr2+2πrh
    圆柱的体积=底面积×高,用字母表示:
    V=πr2h.

    【命题方向】
    常考题型:
    例1:做一个铁皮烟囱需要多少铁皮,就是求烟囱的(  )
    A、表面积 B、体积 C、侧面积
    分析:根据圆柱体的侧面积的定义知道,圆柱侧面积是指将一个圆柱体沿高展开后得到的长方形的面积,做一个铁皮烟囱实际就是做一个没有上、下底面的圆柱体,要求铁皮的多少就是求烟囱的侧面积.
    解:因为,烟囱是通风的,是没有上下两个底的,
    所以,做一个铁皮烟囱需要多少铁皮,就是求烟囱的侧面积,
    故选:C.
    点评:此题主要考查了圆柱体的侧面积的意义,及在生活中的实际应用.

    例2:一个圆柱形量杯底面周长是25.12厘米,高是10厘米,把它装满水后,再倒入一个长10厘米,宽8厘米的长方体容器中,水面高多少厘米?
    分析:由题意可知,把圆柱形容器中的水倒入长方体容器中,只是形状改变了,但是水的体积不变.因此,先根据圆柱的容积(体积)公式v=sh,求出圆柱形容器中水的体积,再除以长方体容器的底面积.由此列式解答.
    解:3.14×(25.12÷3.14÷2)2×10÷(10×8),
    =3.14×42×10÷80,
    =3.14×16×10÷80,
    =502.4÷80,
    =6.28(厘米);
    答:水面高6.28厘米.
    点评:此题属于圆柱和长方体的容积的实际应用,首先根据圆柱的容积(体积)公式求出水的体积,再用水的体积除以长方体容器的底面积.据出解决问题.
    5.工程问题
    【知识点归纳】
    工程问题公式
    (1)一般公式:工效×工时=工作总量;  工作总量÷工时=工效;
      工作总量÷工效=工时.
    (2)用假设工作总量为“1”的方法解工程问题的公式:
      1÷工作时间=单位时间内完成工作总量的几分之几;
      1÷单位时间能完成的几分之几=工作时间.
    (注意:用假设法解工程题,可任意假定工作总量为2、3、4、5….特别是假定工作总量为几个工作时间的最小公倍数时,分数工程问题可以转化为比较简单的整数工程问题,计算将变得比较简便.)
    解答工程问题利用常见的数学思想方法,如代换法、比例法、列表法、方程法等.抛开“工作总量”和“时间”,抓住题目给出的工作效率之间的数量关系,转化出与所求相关的工作效率,最后再利用先前的假设“把整个工程看成一个单位”,求得问题答案.一般情况下,工程问题求的是时间.

    【命题方向】
    经典题型:
    例1:师徒两人共同加工一批零件,师傅每小时加工9个,徒弟每小时加工5个,完成任务时,徒弟比师傅少加工120个.这批零件共有多少个?
    分析:求出师傅比徒弟每小时多加工零件个数,然后依据工作时间=多的工作总量÷每小时多做零件个数,求出两人完成任务需要的时间,最后根据工作总量=工作效率×工作时间即可解答.
    解:120÷(9﹣5)×(9+5)
    =120÷4×14
    =420(个)
    答:这批零件共有420个.
    点评:解答本题的关键是求出两人完成任务需要的时间,解答依据是工作时间,工作效率以及工作总量之间数量关系.

    例2:一项工程,甲、乙两人合做8天可完成.甲单独做需12天完成.现两人合做几天后,余下的工程由乙独自完成,使乙前后两段所用时间比为1:3.这个工程实际工期为多少天?
    分析:由题意可知,甲、乙合作8天完成,甲、乙的合作工作效率为,甲单独12天完成,甲的工作效率为,那么乙的工作效率.人合做几天后,余下的工程由乙独自完成,使乙前后两段所用时间比为1:3,设两人合作x天,那么乙单独做3x天,由此可得方程:x3x=1,解此方程求出两人的合作时间后,即能求出实际工期为多少天.
    解:.
    设两人合作x天,那么乙单独做3x天,由此可得方程:
    x3x=1,
    xx=1,
    x=1,
    x=4.
    4+4×3
    =4+12,
    =16(天).
    答:这个工程实际工期为16天.
    点评:首先根据题意求出乙的工作效率,然后通过设未知数列出等量关系式是完成本题的关键.
    6.利润和利息问题
    【知识点归纳】
    主要公式:
    ①商品利润=商品售价﹣商品进价;
    ②商品利润率=商品利润/商品进价×100%;
    ③商品销售额=商品销售价×商品销售量;
    ④商品的销售利润=(销售价﹣成本价)×销售量.
    ⑤商品售价=商品标价×折扣率.
    利息=本金×利率×存期;(注意:利息税).
    本息=本金+利息,
    利息税=利息×利息税率.
    注意利率有日利率、月利率和年利率,年利率=月利率×12=日利率×365.

    【命题方向】
    常考题型:
    例1:商店购进了一批钢笔,决定以每支9.5元的价格出售.第一个星期卖出了60%,这时还差84元收回全部成本.又过了一个星期后全部售出,总共获得利润372元.那么商店购进这批钢笔的价格是每支多少元?
    分析:又过了一个星期全部售出后,总共获得利润372元,在这之前是还差84元才可以收回全部成本,说明又买出的这部分的总额为372+84=456(元),买出的这部分钢笔的数量是456÷9.5=48(支),而这48支相当于总数的1﹣60%=40%,求出总支数为48÷40%=120(支);然后求出每支钢笔盈利为372÷120=3.1(元),再用每支钢笔的定价减去盈利的部分即为购进价.
    解:这批钢笔的总数量:
    (372+84)÷9.5÷(1﹣60%),
    =456÷9.5÷0.4,
    =48÷0.4,
    =120(支);
    每支钢笔的购进价:
    9.5﹣372÷120,
    =9.5﹣3.1,
    =6.4(元);
    答:商店购进这批钢笔的价格是每支6.4元.
    点评:此题条件较复杂,需认真分析,先求出这批钢笔的数量是解决此题的关键.
    7.相遇问题
    【知识点归纳】
    两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题.它的特点是两个运动物体共同走完整个路程.  小学数学教材中的行程问题,一般是指相遇问题.
    相遇问题根据数量关系可分成三种类型:求路程,求相遇时间,求速度.
    它们的基本关系式如下:
    总路程=(甲速+乙速)×相遇时间
    相遇时间=总路程÷(甲速+乙速)
    另一个速度=甲乙速度和﹣已知的一个速度.

    【命题方向】
    常考题型:
    例1:根据算式选择问题.甲、乙两人同时从两地相向而行,甲骑车每小时行15千米,乙步行每小时行6千米,经过4小时两人相遇.
    (1)甲、乙两人每小时共行多少千米?
    (2)两地之间的路程是多少千米?
    (3)相遇时,甲行了多少千米?
    分析:(1)根据甲乙两人的速度求和,求出甲、乙两人每小时共行多少千米即可;
    (2)根据速度×时间=路程,用甲乙的速度之和乘以相遇用的时间,求出两地之间的路程是多少千米即可;
    (3)根据速度×时间=路程,用甲的速度乘以骑车的时间,求出相遇时甲行了多少千米即可.
    解:(1)15+6=21(千米)
    答:甲、乙两人每小时共行21千米.

    (2)21×4=84(千米)
    答:两地之间的路程是84千米.

    (3)15×4=60(千米)
    答:相遇时,甲行了60千米.
    点评:此题主要考查了行程问题中速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间,要熟练掌握.
    8.追及问题
    【知识点归纳】
    1.追击问题的概念:
    追及问题的地点可以相同(如环形跑道上的追及问题),也可以不同,但方向一般是相同的.由于速度不同,就发生快的追及慢的问题.
    2.追及问题公式:根据速度差、距离差和追及时间三者之间的关系,常用下面的公式:
    距离差=速度差×追及时间
    追及时间=距离差÷速度差
    速度差=距离差÷追及时间
    速度差=快速﹣慢速
    3.解题的关键是在互相关联、互相对应的距离差、速度差、追及时间三者之中,找出两者,然后运用公式求出第三者来达到解题目的.

    【命题方向】
    常考题型:
    例1:上午8时8分,小明骑自行车从家里出发,8分后,爸爸骑摩托车去追他,在离家4千米的地方追上了他,然后爸爸立刻回家.到家后又立刻回头去追小明,再追上他的时候,离家恰好是8千米,问这时是几时几分?
    分析:由题意可知:爸爸第一次追上小明后,立即回家,到家后又回头去追小明,再追上小明时走了12千米.可见小明的速度是爸爸的速度的.爸爸从家到第一次追上小明,小明走了4千米,若爸爸与小明同时出发,则爸爸应走出12千米,但是由于爸爸晚出发8分钟,所以只走了4千米,所以爸爸8分钟应走8千米,则爸爸的速度为1千米/分钟.
    那么,小明先走8分钟后,爸爸只花了4分钟即可追上,这段时间爸爸走了4千米.
    解:爸爸的速度是小明的几倍:(4+8)÷4=3(倍),
    爸爸从家到第一次追上小明,小明走了4千米,若爸爸与小明同时出发,则爸爸应走出12千米,但是由于爸爸晚出发8分钟,所以只走了4千米,所以爸爸8分钟应走8千米,则爸爸的速度为1千米/分钟.
    爸爸所用的时间:(4+4+8)÷1=16(分钟)
    16+16=32(分钟)
    答:这时是8时32分.
    点评:此题既需要根据关系式而且还要更加深刻的理解题意.
    9.植树问题
    【知识点归纳】
    为使其更直观,用图示法来说明.树用点来表示,植树的沿线用线来表示,这样就把植树问题转化为一条非封闭或封闭的线上的“点数”与相邻两点间的线的段数之间的关系问题.
    一、在线段上的植树问题可以分为以下三种情形.
    1、如果植树线路的两端都要植树,那么植树的棵数应比要分的段数多1,即:棵数=间隔数+1.
    2、如果植树线路只有一端要植树,那么植树的棵数和要分的段数相等,即:棵数=间隔数.
    3、如果植树线路的两端都不植树,那么植树的棵数比要分的段数少1,即:棵数=间隔数﹣1.
    4、如果植树路线的两边与两端都植树,那么植树的棵数应比要分的段数多1,再乘二,即:棵树=段数+1再乘二.
    二、在封闭线路上植树,棵数与段数相等,即:棵数=间隔数.
    三、在正方形线路上植树,如果每个顶点都要植树.则棵数=(每边的棵数﹣1)×边数.
    1 非封闭线路上的植树问题主要可分为以下三种情形:
    (1)如果在非封闭线路的两端都要植树,那么:
    株数=段数+1=全长÷株距+1
    全长=株距×(株数﹣1)
    株距=全长÷(株数﹣1)
    (2)如果在非封闭线路的一端要植树,另一端不要植树,那么:
    株数=段数=全长÷株距
    全长=株距×株数
    株距=全长÷株数.

    【命题方向】
    经典题型:
    例1:杨老师从一楼办公室到教室上课,每走一层楼有24级台阶,一共走了72级台阶,杨老师到 4 楼教室上课?
    分析:把楼层与楼层之间的24个台阶看做1个间隔;先求得一共走过了几个间隔:72÷24=3,一楼没有台阶,所以杨老师走到了1+3=4楼.
    解:72÷24+1
    =3+1
    =4(楼)
    答:杨老师去4楼上课.
    故答案为:4.
    点评:因为1楼没有台阶,所以楼层数=1+间隔数.

    例2:有48辆彩车排成一列.每辆彩车长4米,彩车之间相隔6米.这列彩车共长多少米?
    分析:根据题意,可以求出车与车的间隔数是48﹣1=47(个),那么所有的彩车之间的距离和是:47×6=282(米),因为每辆彩车长4米,所有的车长度和是:4×48=192(米),把这两个数加起来就是这列彩车的长度.
    解:车与车的间隔数是:48﹣1=47(个),
    彩车之间的距离和是:47×6=282(米),
    所有的车长度和是:4×48=192(米),
    这列彩车共长:282+192=474(米).
    答:这列彩车共长474米.
    点评:根据题意,按照植树问题求出彩车的长,因为每辆彩车还有车长,还要加上所有彩车的车身长,才是这列彩车的总长.
    10.牛吃草问题
    【知识点归纳】
    牛顿问题的难点在于草每天都在不断生长,草的数量都在不断变化.解答这类题目的关键是想办法从变化中找出不变量,我们可以把总草量看成两部分的和,即原有的草量加新长的草量.显而易见,原有的草量是一定的,新长的草量虽然在变,但如果是匀速生长,我们也能找到另一个不变量﹣﹣每天(每周)新长出的草的数量.
    基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量.
      基本特点:原草量和新草生长速度是不变的;
      关键问题:确定两个不变的量.
      基本公式:
      生长量=(较长时间×长时间牛头数﹣较短时间×短时间牛头数)÷(长时间﹣短时间);
      原有草量=较长时间×长时间牛头数﹣较长时间×生长量;
      牛吃草问题常用到四个基本公式:
      牛吃草问题又称为消长问题,是17世纪英国伟大的科学家牛顿提出来的.典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天.由于吃的天数不同,草又是天天在生长的,所以草的存量随着吃的天数不断地变化.解决牛吃草问题常用到四个基本公式,分别是:
      (1)草的生长速度=(对应的牛头数×吃的较多天数﹣相应的牛头数×吃的较少天数)÷(吃的较多天数﹣吃的较少天数);
      (2)原有草量=牛头数×吃的天数﹣草的生长速度×吃的天数;
      (3)吃的天数=原有草量÷(牛头数﹣草的生长速度);
      (4)牛头数=原有草量÷吃的天数+草的生长速度.
      这四个公式是解决消长问题的基础.
      由于牛在吃草的过程中,草是不断生长的,所以解决消长问题的重点是要想办法从变化中找到不变量.牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的.正是由于这个不变量,才能够导出上面的四个基本公式.

    【命题方向】
    经典题型:
    例1:牧场上一片青草,每天牧草都匀速生长.这片牧草可供10头牛吃20天,或者可供15头牛吃10天.问:可供25头牛吃几天?
    分析:这类题难就难在牧场上草的数量每天都在发生变化,我们要想办法从变化当中找到不变的量.总草量可以分为牧场上原有的草和新生长出来的草两部分.牧场上原有的草是不变的,新长出的草虽然在变化,因为是匀速生长,所以这片草地每天新长出的草的数量相同,即每天新长出的草是不变的.即:
    (1)每天新长出的草量是通过已知的两种不同情况吃掉的总草量的差及吃的天数的差计算出来的.
    (2)在已知的两种情况中,任选一种,假定其中几头牛专吃新长出的草,由剩下的牛吃原有的草,根据吃的天数可以计算出原有的草量.
    (3)在所求的问题中,让几头牛专吃新长出的草,其余的牛吃原有的草,根据原有的草量可以计算出能吃几天.
    解:设1头牛1天吃的草为“1“,由条件可知,前后两次青草的问题相差为10×20﹣15×10=50.
    为什么会多出这50呢?这是第二次比第一次多的那(20﹣10)=10天生长出来的,所以每天生长的青草为50÷10=5.
    现从另一个角度去理解,这个牧场每天生长的青草正好可以满足5头牛吃.由此,我们可以把每次来吃草的牛分为两组,一组是抽出的15头牛来吃当天长出的青草,另一组来吃是原来牧场上的青草,那么在这批牛开始吃草之前,牧场上有多少青草呢?(10﹣5)×20=100.
    那么:第一次吃草量20×10=200,第二次吃草量,15×10=150;
    每天生长草量50÷10=5.
    原有草量(10﹣5)×20=100或200﹣5×20=100.
    25头牛分两组,5头去吃生长的草,其余20头去吃原有的草那么100÷20=5(天).
    答:可供25头牛吃5天.
    点评:解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题中所求的问题.
    这类问题的基本数量关系是:
    1、(牛的头数×吃草较多的天数﹣牛头数×吃草较少的天数)÷(吃的较多的天数﹣吃的较少的天数)=草地每天新长草量.
    2、牛的头数×吃草天数﹣每天新长量×吃草天数=草地原有的草.
    声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布
    日期:2019/5/6 9:21:14;用户:jiangwenxiu;邮箱:jiangwenxiu@xyh.com;学号:26799902

    相关试卷

    2018年北师大版小升初数学复习卷(11):

    这是一份2018年北师大版小升初数学复习卷(11),共20页。试卷主要包含了解答题等内容,欢迎下载使用。

    2018年北师大版小升初数学复习卷(10):

    这是一份2018年北师大版小升初数学复习卷(10),共20页。试卷主要包含了解答题等内容,欢迎下载使用。

    2018年北师大版小升初数学复习卷(9):

    这是一份2018年北师大版小升初数学复习卷(9),共21页。试卷主要包含了解答题等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map