人教版七年级下册5.3.1 平行线的性质图片课件ppt
展开目前,它与地面所成的较小的角为∠1=85º
5.3 平行线的性质5.3.1 平行线的性质
平行线的判定方法是什么?
反过来,如果两条直线平行,同位角、内错角、同旁内角各有什么关系呢?
猜一猜∠1和∠2相等吗?
是不是任意一条直线去截平行线a、b 所得的同位角都相等呢?
两直线平行,同位角相等.
两条平行线被第三条直线所截, 同位角相等.
如图:已知a//b,那么2与3相等吗?为什么?
解∵a∥b(已知), ∴∠1=∠2(两直线平行, 同位角相等). 又∵ ∠1=∠3(对顶角相等), ∴ ∠2=∠3(等量代换).
两直线平行,内错角相等.
两条平行线被第三条直线所截, 内错角相等.
解: ∵a//b (已知),
如图,已知a//b,那么2与4有什么关系呢?为什么?
∴ 1= 2(两直线平行, 同位角相等).
∵ 1+ 4=180° (邻补角定义),
∴ 2+ 4=180° (等量代换).
两直线平行,同旁内角互补.
两条平行线被第三条直线所截, 同旁内角互补.
∴ 2+ 4=180°.
例 如图,已知直线a∥b,∠1 = 500, 求∠2的度数.
∴∠ 2= 500 (等量代换).
解:∵ a∥b(已知),
∴∠ 1= ∠ 2(两直线平行,内错角相等).
又∵∠ 1 = 500 (已知),
变式1:已知条件不变,求∠3,∠4的度数?
变式2:已知∠3 =∠4,∠1=47°,求∠2的度数?
∴∠ 2= 470( )
解:∵ ∠3 =∠4( )
∴a∥b( )
又∵∠ 1 = 470 ( )
两直线平行,同位角相等
同位角相等,两直线平行
如图在四边形ABCD中,已知AB∥CD,∠B = 600.①求∠C的度数;②由已知条件能否求得∠A的度数?
解: ① ∵ AB∥CD(已知),∴ ∠B + ∠C= 1800(两直线平行,同旁内角互补).又∵ ∠B = 600 (已知),∴∠C = 1200 (等式的性质).
②根据题目的已知条件,无法求出∠A的度数.
如图,在汶川大地震当中,一辆抗震救灾汽车经过一条公路两次拐弯后,和原来的方向相同,也就是拐弯前后的两条路互相平行.第一次拐的角∠B等于1420,第二次拐的角∠C是多少度?为什么?
∵AB∥CD (已知),
(两直线平行,内错角相等).
又∵∠B=142° (已知),
∴∠B=∠C=142°
小明在纸上画了一个角∠A,准备用量角器测量它的度数时,因不小心将纸片撕破,只剩下如图的一部分,如果不能延长DC、FE的话,你能帮他设计出多少种方法可以测出∠A的度数?
平行线的性质和平行线的判定方法的 区 别 与 联 系
5.3.2 命题、定理
下列语句在表述形式上,哪些是对事情作了判断?哪些没有对事情作出判断?1、对顶角相等;2、画一个角等于已知角;3、两直线平行,同位角相等;4、a、b两条直线平行吗?5、温柔的李明明;6、玫瑰花是动物;7、若a2=4,求a的值;8、若a2=b2,则a=b。
对事情作了判断的语句是否正确?
2、如果一个句子没有对某一件事情作出任何判断,那么它就不是命题。
如:画线段AB=CD。
判断一件事情的语句叫做命题。
注意:1、只要对一件事情作出了判断,不管正确与否,都是命题。
如:相等的角是对顶角。
命题是由题设(或条件)和结论两部分组成。题设是已知事项,结论是由已知事项推出的事项。
两直线平行, 同位角相等。
命题一般都写成“如果…,那么…”的形式。
“如果”后接的部分是题设,“那么”后接的部分是结论。
如命题:熊猫没有翅膀。改写为:
如果这个动物是熊猫,那么它就没有翅膀。
注意:添加“如果”、“那么”后,命题的意义不能改变,改写的句子要完整,语句要通顺,使命题的题设和结论更明朗,易于分辨,改写过程中,要适当增加词语,切不可生搬硬套。
指出下列各命题的题设和结论,并改写成“如果……那么……”的形式。
1、对顶角相等; 2、内错角相等; 3、两平线被第三直线所截,同位角相等; 4、3<2; 5、同平行于一直线的两直线平行; 6、直角三角形的两个锐角互余; 7、等角的补角相等; 8、正数与负数的和为0。
有些命题如果题设成立,那么结论一定成立;而有些命题题设成立时,结论不一定成立。
正确的命题叫真命题,错误的命题叫假命题。
如命题:“如果两个角互补,那么它们是邻补角”就是一个错误的命题。
如命题:“如果一个数能被4整除,那么它也能被2整除”就是一个正确的命题。
确定一个命题真假的方法:
利用已有的知识,通过观察、验证、推理、举反例等方法。
下列句子哪些是命题?是命题的,指出是真命题还是假命题?
1、猪有四只脚; 2、内错角相等; 3、画一条直线; 4、四边形是正方形; 5、你的作业做完了吗? 6、同位角相等,两直线平行; 7、对顶角相等; 8、同垂直于一直线的两直线平行; 9、过点P画线段MN的垂线; 10、x>2
1、数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理。
2、有些命题可以从公理或其他真命题出发,用逻辑推理的方法判断它们是正确的,并且可以进一步作为判断其他命题真假的依据,这样的真命题叫做定理。
公理和定理都可作为判断其他命题真假的依据。
经过两点有且只有一条直线。
两点的所有连线中,线段最短。
同位角相等,两直线平行。
两直线平行,同位角相等。
经过直线外一点,有且只有一条直线与已知直线平行。
同角或等角的补角相等。
同角或等角的余角相等。
①过一点有且只有一条直线与已知直线垂直;
如果两条直线都和第三条直线平行,那么这两条直线也互相平行。
内错角相等,两直线平行。
同旁内角互补,两直线平行。
6、平行线的判定定理:
7、平行线的性质定理:
两直线平行,内错角相等。
两直线平行,同旁内角互补。
七年级下册5.3.1 平行线的性质教学ppt课件: 这是一份七年级下册5.3.1 平行线的性质教学ppt课件,共17页。PPT课件主要包含了知识要点,下图的线段平行吗,同位角,内错角,同旁内角,平行线的性质,应用格式,∵a∥b已知,∠CPE,等量代换等内容,欢迎下载使用。
初中数学人教版七年级下册5.3.1 平行线的性质教学ppt课件: 这是一份初中数学人教版七年级下册5.3.1 平行线的性质教学ppt课件,共17页。PPT课件主要包含了复习引入,试试看,我知道啦,平行线的性质,可以简记为,知识拓展,请完成以下推理过程,例题选讲,大展身手,因为∠1=∠2等内容,欢迎下载使用。
初中数学人教版七年级下册5.3.1 平行线的性质教学课件ppt: 这是一份初中数学人教版七年级下册5.3.1 平行线的性质教学课件ppt,共12页。PPT课件主要包含了复习回顾,问题探究,问题分析,因为是梯形,所以ABCD,试试看,综合应用,思路点拨,总结归纳,练习巩固等内容,欢迎下载使用。