高中数学人教版新课标A必修32.1.1简单随机抽样课后测评
展开www.ks5u.com§2.1 习题课
课时目标 1.从总体上把握三种抽样方法的区别和联系.2.学会根据数据的不同情况,选用适合的抽样方法进行抽样.
1.为了了解所加工的一批零件的长度,抽取其中200个零件并测量了其长度,在这个问题中,200个零件的长度是( )
A.总体 B.个体
C.总体的一个样本 D.样本容量
答案 C
2.某工厂质检员每隔10分钟从传送带某一位置取一件产品进行检测,这种抽样方法是( )
A.分层抽样 B.简单随机抽样
C.系统抽样 D.以上都不对
答案 C
解析 按照一定的规律进行抽取为系统抽样.
3.某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查,这种抽样方法是( )
A.简单随机抽样法 B.抽签法
C.随机数法 D.分层抽样法
答案 D
解析 由分层抽样的定义可知,该抽样为按比例的抽样.
4.对于简单随机抽样,下列说法中正确的命题为( )
①它要求被抽取样本的总体的个数有限,以便对其中各个个体被抽取的概念进行分析;
②它是从总体中逐个进行抽取,以便在抽样实践中进行操作;
③它是一种不放回抽样;
④它是一种等可能抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的可能性相等,而且在整个抽样过程中,各个个体被抽取的可能性也相等,从而保证了这种抽样方法的公平性.
A.①②③ B.①②④
C.①③④ D.①②③④
答案 D
5.在学生人数比例为2∶3∶5的A,B,C三所学校中,用分层抽样的方法招募n名志愿者,若在A学校恰好选出了6名志愿者,那么n=________.
答案 30
解析 由题意,知×n=6,∴n=30.
6.博才实验中学共有学生1 600名,为了调查学生的身体健康状况,采用分层抽样法抽取一个容量为200的样本.已知样本容量中女生比男生少10人,则该校的女生人数是________人.
答案 760
解析 设该校女生人数为x,则男生人数为(1 600-x).
由已知,×(1 600-x)-·x=10,解得x=760.故该校的女生人数是760人.
一、选择题
1.下列哪种工作不能使用抽样方法进行( )
A.测定一批炮弹的射程
B.测定海洋水域的某种微生物的含量
C.高考结束后,国家高考命题中心计算数学试卷中每个题目的难度
D.检测某学校全体高三学生的身高和体重的情况
答案 D
2.一个田径队,有男运动员56人,女运动员42人,比赛后,立即用分层抽样的方法,从全体队员中抽出一个容量为28的样本进行尿样兴奋剂检查,其中男运动员应抽的人数为( )
A.16 B.14
C.28 D.12
答案 A
解析 运动员共计98人,抽取比例为=,因此男运动员56人中抽取16人.
3.下列抽样实验中,最适宜用系统抽样的是( )
A.某市的4个区共有2 000名学生,且4个区的学生人数之比为3∶2∶8∶2,从中抽取200人入样
B.某厂生产的2 000个电子元件中随机抽取5个入样
C.从某厂生产的2 000个电子元件中随机抽取200个入样
D.从某厂生产的20个电子元件中随机抽取5个入样
答案 C
解析 A中总体有明显层次,不适用系统抽样法;B中样本容量很小,适宜用简单随机抽样法中的随机数法;D中总体数很小,故适宜用抽签法,只有C比较适用系统抽样法.
4.一段高速公路有300个太阳能标志灯,其中进口的有30个,联合研制的有75个,国产的有195个,为了掌握每个标志灯的使用情况,要从中抽取一个容量为20的样本,若采用分层抽样的方法,抽取的进口的标志灯的数量为( )
A.2个 B.3个
C.5个 D.13个
答案 A
解析 抽取的样本容量与总体的比值为=,
所以抽取的样本中,进口的标志灯抽取的数量为30×=2(个).
5.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是( )
A.12,24,15,9 B.9,12,12,7
C.8,15,12,5 D.8,16,10,6
答案 D
解析 由题意,各种职称的人数比为160∶320∶200∶120=4∶8∶5∶3,所以抽取的具有高、中、初级职称的人数和其他人员的人数分别为40×=8,40×=16,40×=10,40×=6.
6.某单位有职工100人,不到35岁的有45人,35岁到49岁的25人,剩下的为50岁以上的人,现在用分层抽样法抽取20人,则各年龄段人数分别是( )
A.7,4,6 B.9,5,6
C.6,4,9 D.4,5,9
答案 B
解析 各年龄段所选分别为×45=9,×25=5,×30=6.
二、填空题
7.某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户,从普通家庭中以简单随机抽样方法抽取990户,从高收入家庭中以简单随机抽样方法抽取100户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收入家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是________.
答案 5.7%
解析 ∵990∶99 000=1∶100,∴普通家庭中拥有3套或3套以上住房的大约为50×100=5 000(户).
又∵100∶1 000=1∶10,∴高收入家庭中拥有3套或3套以上住房的大约为70×10=700(户).
∴3套或3套以上住房的家庭约有5 000+700=5 700(户).故=5.7%.
8.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本、用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是__________.若用分层抽样方法,则40岁以下年龄段应抽取________人.
答案 37 20
解析 由分组可知,抽号的间隔为5,又因为第5组抽出的号码为22,所以第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为37. 40岁以下的年龄段的职工数为200×0.5=100,则应抽取的人数为×100=20(人).
9.从某地区15 000位老人中随机抽取500人,其生活能否自理的情况如下表所示.
性别 人数 生活能否自理 | 男 | 女 |
能 | 178 | 278 |
不能 | 23 | 21 |
则该地区生活不能自理的老人中男性比女性约多________人.
答案 60
解析 由表知500人中生活不能自理的男性比女性多2人,所以该地区15 000位老人生活不能自理的男性比女性多2×=60(人).
三、解答题
10.某电台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12 000人,其中持各种态度的人数如下表:
很喜爱 | 喜爱 | 一般 | 不喜爱 |
2 435 | 4 567 | 3 926 | 1 072 |
电视台为进一步了解观众的具体想法和意见,打算从中抽取60人进行更为详细的调查,应当怎样进行抽样?
解 可用分层抽样方法,其总体容量为12 000.“很喜爱”占,应取60×≈12(人);“喜爱”占,应取60×≈23(人);“一般”占,应取60×≈20(人);“不喜爱”占,应取60×≈5(人).因此采用分层抽样在“很喜爱”、“喜爱”、“一般”和“不喜爱”的2 435人、4 567人、3 926人和1 072人中分别抽取12人、23人、20人和5人.
11.某单位在岗职工共624人,为了调查工人用于上班途中的时间,该单位工会决定抽取10%的工人进行调查,请问如何采用系统抽样法完成这一抽样?
解 (1)将624名职工用随机方式编号由000至623.
(2)利用随机数法从总体中剔除4人.
(3)将剩下的620名职工重新编号由000至619.
(4)分段,取间隔k==10,将总体分成62组,每组含10人.
(5)从第一段,即为000到009号随机抽取一个号l.
(6)按编号将l,10+l,20+l,…,610+l,共62个号码选出,这62个号码所对应的职工组成样本.
能力提升
12.某单位共有老、中、青职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为( )
A.9 B.18 C.27 D.36
答案 B
解析 设该单位老年职工有x人,从中抽取y人.
则160+3x=430⇒x=90,即老年职工有90人,
则=⇒y=18.
故选B.
13.为调查小区平均每户居民的月用水量,下面是3名学生设计的调查方案:
学生A:我把这个用水量调查表放在互联网上,只要登录网址的人就可以看到这张表,他们填表的信息可以很快地反馈到我的电脑中.这样,我就可以很快估计出小区平均每户居民的月用水量.
学生B:我给我们居民小区的每一个住户发一个用水量调查表,只要一两天就可以统计出小区平均每户居民的月用水量.
学生C:我在小区的电话号码本上随机地选出一定数量的电话号码,然后逐个给他们打电话,问一下他们的月用水量,然后就可以估计出小区平均每户居民的月用水量.
请问:对上述3种学生设计的调查方案能够获得平均每户居民的月用水量吗?为什么?你有什么建议?
解 学生A的方法得到的样本不能够反映不上网的居民情况,是一种方便样本,所得的结果代表性差,不能很准确地获得平均每户居民的月用水量;学生B的方法实际上是普查,花费的人力物力要多一些,但是如果统计过程不出错,可以准确地得到平均每户居民的月用水量;在小区的每户居民都装有电话的情况下,学生C的方法是一种随机抽样方法,所得的样本具有代表性,可以比较准确地获得平均每户居民的月用水量.
在小区的每户居民都装有电话的情况下,建议用随机抽样的方法获取数据,即用学生C的方法,以节省人力物力,并且可以得到比较精确的结果.
1.抽签法的关键是搅拌均匀,才能达到等概率抽样,抽签法的优点是操作简单、易行、方便,缺点是只适用于总体中个体数较少时.
2.在系统抽样中,遇到(N是总体,n是样本容量)不是整数时,要从总体中剔除多余的个体,使剩余的个体能被样本容量整除,剔除多余个体所用的方法是随机抽样法.
3.分层抽样的步骤是将总体按一定的标准分层,按各层个体占总体的比在每一层进行随机抽取;其特点是适用于总体由差异明显的几部分组成.
4.几种抽样方法的共同特点是它们在抽样过程中,属不放回抽样,且每次抽取时,总体内的各个个体被抽到的机会是相等的.这体现了这些抽样方法的客观性和公平性.
高中数学人教版新课标A必修3本节综合巩固练习: 这是一份高中数学人教版新课标A必修3本节综合巩固练习,共9页。试卷主要包含了巩固本章主干知识点,125,则n的值是等内容,欢迎下载使用。
人教版新课标A必修32.3.1变量之间的相关关系课时作业: 这是一份人教版新课标A必修32.3.1变量之间的相关关系课时作业,共6页。试卷主要包含了5,506,③将数据分组,eq \f,5,502等内容,欢迎下载使用。
高中数学人教版新课标A必修32.2.1用样本的频率分布估计总体同步达标检测题: 这是一份高中数学人教版新课标A必修32.2.1用样本的频率分布估计总体同步达标检测题,共4页。试卷主要包含了理解系统抽样的概念、特点等内容,欢迎下载使用。