|试卷下载
终身会员
搜索
    上传资料 赚现金
    高中数学人教A必修5学业分层测评14 等比数列的前n项和 Word版含解析
    立即下载
    加入资料篮
    高中数学人教A必修5学业分层测评14 等比数列的前n项和 Word版含解析01
    高中数学人教A必修5学业分层测评14 等比数列的前n项和 Word版含解析02
    高中数学人教A必修5学业分层测评14 等比数列的前n项和 Word版含解析03
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版新课标A必修5第二章 数列2.5 等比数列的前n项和课时练习

    展开
    这是一份人教版新课标A必修5第二章 数列2.5 等比数列的前n项和课时练习,共6页。

    1.设{an}是公比为q的等比数列,Sn是它的前n项和,若{Sn}是等差数列,则q等于( )
    A.1 B.0 C.1或0 D.-1
    【解析】 因为Sn-Sn-1=an,又{Sn}是等差数列,所以an为定值,即数列{an}为常数列,所以q=eq \f(an,an-1)=1.
    【答案】 A
    2.等比数列{an}的前n项和为Sn,已知S3=a2+10a1,a5=9,则a1=( )
    A.eq \f(1,3) B.-eq \f(1,3)
    C.eq \f(1,9) D.-eq \f(1,9)
    【解析】 设公比为q,∵S3=a2+10a1,a5=9,
    ∴eq \b\lc\{\rc\ (\a\vs4\al\c1(a1+a2+a3=a2+10a1,,a1q4=9,))
    ∴eq \b\lc\{\rc\ (\a\vs4\al\c1(a1q2=9a1,,a1q4=9,))
    解得a1=eq \f(1,9),故选C.
    【答案】 C
    3.一座七层的塔,每层所点的灯的盏数都等于上面一层的2倍,一共点381盏灯,则底层所点灯的盏数是( )
    A.190 B.191 C.192 D.193
    【解析】 设最下面一层灯的盏数为a1,则公比q=eq \f(1,2),n=7,由eq \f(a1\b\lc\[\rc\](\a\vs4\al\c1(1-\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))7)),1-\f(1,2))=381,
    解得a1=192.
    【答案】 C
    4.设数列1,(1+2),…,(1+2+22+…+2n-1),…的前n项和为Sn,则Sn的值为( )
    A.2n B.2n-n
    C.2n+1-n D.2n+1-n-2
    【解析】 法一 特殊值法,由原数列知S1=1,S2=4,在选项中,满足S1=1,S2=4的只有答案D.
    法二 看通项,an=1+2+22+…+2n-1=2n-1.
    ∴Sn=eq \f(22n-1,2-1)-n=2n+1-n-2.
    【答案】 D
    5.已知数列{an}为等比数列,Sn是它的前n项和,若a2·a3=2a1,且a4与2a7的等差中项为eq \f(5,4),则S5=( )
    A.35 B.33
    C.31 D.29
    【解析】 设数列{an}的公比为q,
    ∵a2·a3=aeq \\al(2,1)·q3=a1·a4=2a1,
    ∴a4=2.
    又∵a4+2a7=a4+2a4q3=2+4q3
    =2×eq \f(5,4),
    ∴q=eq \f(1,2).
    ∴a1=eq \f(a4,q3)=16,S5=eq \f(a11-q5,1-q)=31.
    【答案】 C
    二、填空题
    6.在等比数列{an}中,若公比q=4,且前3项之和等于21,则该数列的通项公式an=________.
    【解析】 ∵在等比数列{an}中,前3项之和等于21,
    ∴eq \f(a11-43,1-4)=21,
    ∴a1=1,∴an=4n-1.
    【答案】 4n-1
    7.设数列{an}是首项为1,公比为-2的等比数列,则a1+|a2|+a3+|a4|=________.
    【解析】 法一 a1+|a2|+a3+|a4|=1+|1×(-2)|+1×(-2)2+|1×(-2)3|=15.
    法二 因为a1+|a2|+a3+|a4|=|a1|+|a2|+|a3|+|a4|,数列{|an|}是首项为1,公比为2的等比数列,故所求代数式的值为eq \f(1-24,1-2)=15.
    【答案】 15
    8.(2015·全国卷Ⅰ)在数列{an}中,a1=2,an+1=2an,Sn为{an}的前n项和.若Sn=126,则n=________.
    【解析】 ∵a1=2,an+1=2an,
    ∴数列{an}是首项为2,公比为2的等比数列,
    又∵Sn=126,∴eq \f(21-2n,1-2)=126,∴n=6.
    【答案】 6
    三、解答题
    9.等比数列{an}的前n项和为Sn,已知S1,S3,S2成等差数列. 【导学号:05920072】
    (1)求{an}的公比q;
    (2)若a1-a3=3,求Sn.
    【解】 (1)依题意有a1+(a1+a1q)=2(a1+a1q+a1q2),
    由于a1≠0,故2q2+q=0.
    又q≠0,从而q=-eq \f(1,2).
    (2)由已知可得a1-a1eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,2)))2=3,
    故a1=4.
    从而Sn=eq \f(4\b\lc\[\rc\](\a\vs4\al\c1(1-\b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,2)))n)),1-\b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,2))))=eq \f(8,3)eq \b\lc\[\rc\](\a\vs4\al\c1(1-\b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,2)))n)).
    10.(2015·浙江高考)已知数列{an}和{bn}满足a1=2,b1=1,an+1=2an(n∈N*),b1+eq \f(1,2)b2+eq \f(1,3)b3+…+eq \f(1,n)bn=bn+1-1(n∈N*).
    (1)求an与bn;
    (2)记数列{anbn}的前n项和为Tn,求Tn.
    【解】 (1)由a1=2,an+1=2an,得an=2n(n∈N*).
    由题意知:
    当n=1时,b1=b2-1,故b2=2.
    当n≥2时,eq \f(1,n)bn=bn+1-bn.
    整理得eq \f(bn+1,n+1)=eq \f(bn,n),
    所以bn=n(n∈N*).
    (2)由(1)知anbn=n·2n,
    因此Tn=2+2·22+3·23+…+n·2n,
    2Tn=22+2·23+3·24+…+n·2n+1,
    所以Tn-2Tn=2+22+23+…+2n-n·2n+1.
    故Tn=(n-1)2n+1+2(n∈N*).
    [能力提升]
    1.在等比数列{an}中,a1+a2+…+an=2n-1(n∈N*),则aeq \\al(2,1)+aeq \\al(2,2)+…+aeq \\al(2,n)等于( )
    A.(2n-1)2 B.eq \f(1,3)(2n-1)2
    C.4n-1 D.eq \f(1,3)(4n-1)
    【解析】 a1+a2+…+an=2n-1,即Sn=2n-1,则Sn-1=2n-1-1(n≥2),则an=2n-2n-1=2n-1(n≥2),又a1=1也符合上式,所以an=2n-1,aeq \\al(2,n)=4n-1,所以aeq \\al(2,1)+aeq \\al(2,2)+…+aeq \\al(2,n)=eq \f(1,3)(4n-1).
    【答案】 D
    2.如图2­5­1,作边长为3的正三角形的内切圆,在这个圆内作内接正三角形,然后,再作新三角形的内切圆.如此下去,则前n个内切圆的面积和为( )
    图2­5­1
    A.eq \f(πa2,3)eq \b\lc\(\rc\)(\a\vs4\al\c1(1-\f(1,4n))) B.eq \b\lc\(\rc\)(\a\vs4\al\c1(1-\f(1,4n)))π
    C.2eq \b\lc\(\rc\)(\a\vs4\al\c1(1-\f(1,4n)))π D.3eq \b\lc\(\rc\)(\a\vs4\al\c1(1-\f(1,4n)))π
    【解析】 根据条件,第一个内切圆的半径为eq \f(\r(3),6)×3=eq \f(\r(3),2),面积为eq \f(3,4)π,第二个内切圆的半径为eq \f(\r(3),4),面积为eq \f(3,16)π,…,这些内切圆的面积组成一个等比数列,首项为eq \f(3,4)π,公比为eq \f(1,4),故面积之和为eq \f(\f(3,4)π\b\lc\(\rc\)(\a\vs4\al\c1(1-\f(1,4n))),1-\f(1,4))=eq \b\lc\(\rc\)(\a\vs4\al\c1(1-\f(1,4n)))π.
    【答案】 B
    3.某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n(n∈N*)等于________.
    【解析】 每天植树棵数构成等比数列{an},
    其中a1=2,q=2,则Sn=eq \f(a11-qn,1-q)=2(2n-1)≥100,即2n+1≥102,∴n≥6,∴最少天数n=6.
    【答案】 6
    4.(2015·湖北高考)设等差数列{an}的公差为d,前n项和为Sn,等比数列{bn}的公比为q.已知b1=a1,b2=2,q=d,S10=100.
    (1)求数列{an},{bn}的通项公式;
    (2)当d>1时,记cn=eq \f(an,bn),求数列{cn}的前n项和Tn.
    【解】 (1)由题意有eq \b\lc\{\rc\ (\a\vs4\al\c1(10a1+45d=100,,a1d=2,))
    即eq \b\lc\{\rc\ (\a\vs4\al\c1(2a1+9d=20,,a1d=2,))
    解得eq \b\lc\{\rc\ (\a\vs4\al\c1(a1=1,,d=2))或eq \b\lc\{\rc\ (\a\vs4\al\c1(a1=9,,d=\f(2,9).))
    故eq \b\lc\{\rc\ (\a\vs4\al\c1(an=2n-1,,bn=2n-1))或eq \b\lc\{\rc\ (\a\vs4\al\c1(an=\f(1,9)2n+79,,bn=9·\b\lc\(\rc\)(\a\vs4\al\c1(\f(2,9)))n-1.))
    (2)由d>1,知an=2n-1,bn=2n-1,故cn=eq \f(2n-1,2n-1),
    于是Tn=1+eq \f(3,2)+eq \f(5,22)+eq \f(7,23)+eq \f(9,24)+…+eq \f(2n-1,2n-1),①
    eq \f(1,2)Tn=eq \f(1,2)+eq \f(3,22)+eq \f(5,23)+eq \f(7,24)+…+eq \f(2n-3,2n-1)+eq \f(2n-1,2n).②
    ①-②可得
    eq \f(1,2)Tn=2+eq \f(1,2)+eq \f(1,22)+…+eq \f(1,2n-2)-eq \f(2n-1,2n)=3-eq \f(2n+3,2n),
    故Tn=6-eq \f(2n+3,2n-1).
    相关试卷

    高中数学人教版新课标A必修52.5 等比数列的前n项和当堂达标检测题: 这是一份高中数学人教版新课标A必修52.5 等比数列的前n项和当堂达标检测题,共5页。

    人教版新课标A必修52.3 等差数列的前n项和精练: 这是一份人教版新课标A必修52.3 等差数列的前n项和精练,共5页。

    数学必修52.4 等比数列课时训练: 这是一份数学必修52.4 等比数列课时训练,共5页。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        高中数学人教A必修5学业分层测评14 等比数列的前n项和 Word版含解析
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map