高中数学人教版新课标A必修13.2.1几类不同增长的函数模型精练
展开
这是一份高中数学人教版新课标A必修13.2.1几类不同增长的函数模型精练,共6页。
学业分层测评(二十二) (建议用时:45分钟)[学业达标]一、选择题 1.y1=2x,y2=x2,y3=log2x,当2<x<4时,有( )A.y1>y2>y3 B.y2>y1>y3C.y1>y3>y2 D.y2>y3>y1【解析】 在同一平面直角坐标系内画出这三个函数的图象(图略),在区间(2,4)内,从上到下图象依次对应的函数为y2=x2,y1=2x,y3=log2x,故y2>y1>y3.【答案】 B2.某地区植被被破坏,土地沙漠化越来越严重,最近三年测得沙漠增加值分别为0.2万公顷、0.4万公顷和0.76万公顷,则沙漠增加数y公顷关于年数x的函数关系较为近似的是( )A.y=0.2x B.y=(x2+2x)C.y= D.y=0.2+log16x【解析】 用排除法,当x=1时,排除B项;当x=2时,排除D项;当x=3时,排除A项.【答案】 C3.高为H,满缸水量为V0的鱼缸的轴截面如图324所示,其底部碰了一个小洞,满缸水从洞中流出,若鱼缸水深为h时水的体积为V,则函数V=f(h)的大致图象是( ) 图324 【解析】 当h=H时,体积是V,故排除A,C.h由0到H变化的过程中,V的变化开始时增长速度越来越快,类似于指数型函数的图象,后来增长速度越来越慢,类似于对数型函数的图象,综合分析可知选B.【答案】 B4.函数y=2x-x2的图象大致是( )【解析】 分别画出y=2x,y=x2的图象,如图所示,由图象可知,有3个交点,∴函数y=2x-x2的图象与x轴有3个交点,故排除B,C;当x<-1时,y<0,故排除D,故选A.【答案】 A5.某林区的森林蓄积量每年比上一年平均增长10.4%,要增长到原来的x倍,需经过y年,则函数y=f(x)的图象大致为( )【解析】 设该林区的森林原有蓄积量为a,由题意可得ax=a(1+0.104)y,故y=log1.104x(x≥1),所以函数y=f(x)的图象大致为D中图象,故选D.【答案】 D二、填空题6.函数y=x2与函数y=xln x在区间(0,+∞)上增长较快的一个是________ . 【解析】 当x变大时,x比ln x增长要快,∴x2要比xln x增长的要快.【答案】 y=x27.在不考虑空气阻力的情况下,火箭的最大速度v米/秒和燃料的质量M千克、火箭(除燃料外)的质量m千克的函数关系式是v=2 000ln.当燃料质量是火箭质量的________倍时,火箭的最大速度可达12千米/秒.【解析】 当v=12 000时,2 000×ln=12 000,∴ln=6,∴=e6-1.【答案】 e6-18.在某种金属材料的耐高温实验中,温度随着时间变化的情况由微机记录后显示的图象如图325所示.现给出下列说法:图325①前5min温度增加的速度越来越快;②前5min温度增加的速度越来越慢;③5min以后温度保持匀速增加;④5min以后温度保持不变.其中正确的说法是________.(填序号)【解析】 因为温度y关于时间t的图象是先凸后平,即5min前每当t增加一个单位增量,则y相应的增量越来越小,而5min后是y关于t的增量保持为0,则②④正确.【答案】 ②④三、解答题9.某人对东北一种松树的生长进行了研究,收集了其高度h(米)与生长时间t(年)的相关数据,选择h=mt+b与h=loga(t+1)来刻画h与t的关系,你认为哪个符合?并预测第8年的松树高度.t(年)123456h(米)0.611.31.51.61.7【解】 据表中数据作出散点图如图:由图可以看出用一次函数模型不吻合,选用对数型函数比较合理.将(2,1)代入到h=loga(t+1)中,得1=loga3,解得a=3.即h=log3(t+1).当t=8时,h=log3(8+1)=2,故可预测第8年松树的高度为2米.10.有甲,乙两家健身中心,两家设备和服务都相当,但收费方式不同.甲中心每小时5元;乙中心按月计算,一个月中30小时以内(含30小时)90元,超过30小时的部分每小时2元.某人准备下个月从这两家中选择一家进行健身活动,其活动时间不少于15小时,也不超过40小时.(1)设在甲中心健身活动x(15≤x≤40)小时的收费为f(x)元,在乙中心健身活动x小时的收费为g(x)元,试求f(x)和g(x);(2)问:选择哪家比较合算?为什么?【解】 (1)f(x)=5x,15≤x≤40,g(x)=(2)当5x=90时,x=18,即当15≤x<18时,f(x)<g(x);当x=18时,f(x)=g(x),当18<x≤40时,f(x)>g(x).所以当15≤x<18时,选甲比较合算;当x=18时,两家一样合算;当18<x≤40时,选乙比较合算.[能力提升]1.四人赛跑,假设他们跑过的路程fi(x)(其中i∈{1,2,3,4})和时间x(x>1)的函数关系分别是f1(x)=x2,f2(x)=4x,f3(x)=log2x,f4(x)=2x,如果他们一直跑下去,最终跑在最前面的人具有的函数关系是( )A.f1(x)=x2B.f2(x)=4xC.f3(x)=log2xD.f4(x)=2x【解析】 显然四个函数中,指数函数是增长最快的,故最终跑在最前面的人具有的函数关系是f4(x)=2x,故选D.【答案】 D2.下面对函数f(x)=logx,g(x)=与h(x)=在区间(0,+∞)上的衰减情况说法正确的是( )A.f(x)衰减速度越来越慢,g(x)衰减速度越来越快,h(x)衰减速度越来越慢B.f(x)衰减速度越来越快,g(x)衰减速度越来越慢,h(x)衰减速度越来越快C.f(x)衰减速度越来越慢,g(x)衰减速度越来越慢,h(x)衰减速度越来越慢D.f(x)衰减速度越来越快,g(x)衰减速度越来越快,h(x)衰减速度越来越快【解析】 观察函数f(x)=logx,g(x)=与h(x)=在区间(0,+∞)上的图象,由图可知:函数f(x)的图象在区间(0,1)上递减较快,但递减速度逐渐变慢;在区间(1,+∞)上递减较慢,且越来越慢;同样,函数g(x)的图象在区间(0,+∞)上递减较慢,且递减速度越来越慢;函数h(x)的图象在区间(0,1)上递减较快,但递减速度变慢;在区间(1,+∞)上,递减较慢,且越来越慢.故选C.【答案】 C3.已知某工厂生产某种产品的月产量y与月份x满足关系y=a·(0.5)x+b,现已知该厂今年1月、2月生产该产品分别为1万件、1.5万件.则此厂3月份该产品的产量为________万件. 【解析】 ∵y=a·(0.5)x+b,且当x=1时,y=1,当x=2时,y=1.5,则有解得∴y=-2×(0.5)x+2.当x=3时,y=-2×0.125+2=1.75(万件).【答案】 1.754.某学校为了实现60万元的生源利润目标,准备制定一个激励招生人员的奖励方案:在生源利润达到5万元时,按生源利润进行奖励,且资金y(单位:万元)随生源利润x(单位:万元)的增加而增加,但资金总数不超过3万元,同时奖金不超过利润的20%.现有三个奖励模型:y=0.2x,y=log5x,y=1.02x,其中哪个模型符合该校的要求?【解】 借助工具作出函数y=3,y=0.2x,y=log5x,y=1.02x的图象(如图所示).观察图象可知,在区间[5,60]上,y=0.2x,y=1.02x的图象都有一部分在直线y=3的上方,只有y=log5x的图象始终在y=3和y=0.2x的下方,这说明只有按模型y=log5x进行奖励才符合学校的要求.
相关试卷
这是一份数学必修13.2.1几类不同增长的函数模型随堂练习题,共6页。
这是一份2020-2021学年3.2.1几类不同增长的函数模型巩固练习,共4页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份高中数学人教版新课标A必修13.2.1几类不同增长的函数模型测试题,共2页。