2020届江苏省高邮市高三上学期12月阶段性学情联合调研数学(文)试题(解析版)
展开
这是一份2020届江苏省高邮市高三上学期12月阶段性学情联合调研数学(文)试题(解析版),共11页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。
江苏省高邮市2020届高三12月阶段性学情联合调研数学文试题一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上.)1.己知全集U={﹣1,0,2},集合A={﹣1,0},则= .答案:{2}考点: 补集及其运算解析:∵全集U={﹣1,0,2},集合A={﹣1,0}, ∴={2}.2.己知复数(i为虚数单位),复数z虚部为 .答案:考点:复数解析:,故虚部为.3.设向量=(l,k),=(﹣2,k﹣3),若∥,则实数k的值为 .答案:1考点:向量平行的坐标运算解析:∵向量=(l,k),=(﹣2,k﹣3),且∥, ∴,解得k=1.4.函数=的单调减区间为 .答案:(,)考点:利用导数研究函数的单调性解析:∵=,∴, 当时,,故原函数的单调减区间为(,).5.已知双曲线的一条渐近线的倾斜角为45º,且过点(3,1),则双曲线的焦距等于 .答案:8考点:双曲线及其性质解析:由题意知:,解得,故,∴焦距2c=8.6.己知偶函数在[0,+∞)单调递减,=0,若>0,则x的取值范围是 .答案:(,)考点:函数的单调性与奇偶性解析:由于函数是偶函数,且=0,则=0,又在[0,+∞)单调递减, 故在(﹣∞,0]单调递增,∴当时,, 要使>0,则,解得,故x的取值范围是(,).7.如图,己知棱长为2的正方体ABCD—A1B1C1D1中,M是棱CC1的中点,则三棱锥M—A1AB的体积 .答案:考点:棱锥的体积解析:.8.在△ABC中,如果sin A:sin B:sin C=2:3:4,则sin C= .答案:考点:正弦定理、余弦定理解析:∵sin A:sin B:sin C=2:3:4, ∴a:b:c=2:3:4, 设a=2x,b=3x,c=4x, ∴, ∴sinC=.9.己知等比数列的前n项和为,若=7,=63,则= .答案:448考点:等比数列的性质解析:∵=7,=63,则, ∴,即=448.10.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题—“将军饮马”,即将军在观望烽火之后从山脚下某处出发,先到河边饮马再回到军营,怎样走才能使总路程最短?在如图所示的直角坐标系xOy中,设军营所在平面区域的边界为x2+y2=4,河岸线所在直线方程为x+y﹣6=0,假定将军从点P(3,﹣2)处出发,只要到达军营所在区域即回到军营,则将军行走的最短路程为 .答案:﹣2考点:对称点求法,两点间距离公式的计算解析:设点Q与点O关于直线x+y﹣6=0对称,连接PQ,则PQ﹣2即为所求最小值, 首先求得点Q(6,6),则PQ=, ∴PQ﹣2=﹣2,则将军行走的最短路程为﹣2.l1.在平行四边形ABCD中,己知AB=6,AD=5,,=﹣18,则= .答案:15考点:平面向量的数量积解析:∵ 又=﹣18,AB=6,AD=5, ∴,故, ∴ .12.己知x (0,3),则的最小值为 .答案:考点:基本不等式解析:, ∵,∴ ∴ , 当且仅当x=1时,取“=”.13.己知△ABC的面积为+1,AC=2,且=1,则tanA的值为 .答案:考点:三角恒等变换、正弦定理解析:∵=1, ∴, ∴4cosAsinB+3cosBsinA=sinAsinB, ∴3sinC=sinB(sinA﹣cosA),故=sinA﹣cosA, ∵△ABC的面积为+1,则,代入上式得: ,∵b=AC=2, ∴,即, 解得.14.己知函数的图象上有且仅有两个不同的点关于直线y=﹣2的对称点在kx﹣y﹣3=0的图象上,则实数k的取值范围是 .答案:(,)(1,)考点:函数与方程解析:直线kx﹣y﹣3=0关于直线y=﹣2的对称直线为y=﹣1﹣kx, 故可将题意转化为直线y=﹣1﹣kx与函数有且仅有两个交点, 当x=0时,显然不符合题意,当x≠0时,参变分离得:, 即方程有两个不相等的实数根,通过数形结合即可求得实数k的取值范围是k>1或k<,即(,)(1,).二、解答题(本大题共6小题,共计90分.请在答题纸指定区域内作答,解答应写出文字说明,证明过程或演算步骤.)15.(本题满分14分)若函数(>0,0<<)的图象经过点(0,),且相邻的两条对称轴之间的距离为6.(1)求函数的解析式;(2)若将函数的图象向右平移3个单位后得到函数的图象,当x [﹣1,5]时,的值域.解:(1) 函数图像的两条相邻对称轴之间的距离为6,记的周期为,则,又,. ;的图象经过点,,, 函数的解析式为 (2) 将函数的图象向右平移3个单位后得到函数的图象,由(1)得,,函数的解析式为; 当时,,则. 综上,当时,的值域为. 16.(本题满分14分)如图,在四棱锥P—ABCD中,底面ABCD是平行四边形,E为棱PD的中点,PA⊥平面ABCD.(1)求证:PB //平而AEC;(2)若四边形ABCD是矩形且PA=AD,求证:AE⊥平面PCD.证明:(1)连接交于,因为是平行四边形,所以是的中点,因为为的中点,所以// 又因为平面,平面所以//平面 (2)因为且是的中点,所以又因为平面,平面,所以 因为四边形是矩形,所以,因为平面且所以平面 又因为平面,所以 平面且所以平面 17.(本题满分14分)如图①,某半径为lm的圆形广告牌,安装后其圆心O距墙壁1.5m.为安全起见,决定对广告牌制作一合金支架.如图②,支架由广告牌所在圆周上的劣弧MN,线段PA,线段PB构成.其中点P为广告牌的最低点,且为弧MN中点,点A,B在墙面上,PA垂直于墙面.兼顾美观及有效支撑,规定弧、所对圆心角及PB与墙面所成的角均为,[,].经测算,PA、PB段的每米制作费用分别为a元、a元,弧MN段侮米制作费用为3a元.(1)试将制作一个支架所需的费用表示为的函数;(2)求制作支架所需费用的最小值.解:(1)在扇形OMN中,劣弧MN的长度为在中,, 所以所需费用, (2) 当时,,在区间上单调递减; 当时,,在区间上单调递增;所以当时,有最小值 答:所需费用的最小值元. 18.(本题满分16分)如图,己知椭圆C:过点(1,),离心率为,A,B分别是椭圆C的左,右顶点,过右焦点F且斜率为k(k>0)的直线线l与椭圆相交于M,N两点.(1)求椭圆C的标准方程;(2)记△AFM,△BFN的而积分别为S1,S2,若,求k的值;(3)己知直线AM、BN的斜率分k1,k2,求的值.解:(1)设椭圆的焦距为.离心率为, 解得. 则椭圆的方程为. (2) 设点 ,整理可得即, 代入坐标,可得即,又点在椭圆C上,解得直线的斜率 (3)直线的方程为由消去得 又 19.(本题满分16分)己知函数.(1)当a=1时,求在x=1处的切线方程:(2)当a>0时,讨论的单调性;(3)若有两个极值点,(≠),且不等式恒成立,求实数的取值范围.解:(1)当时,, , 所以在处的切线方程为,即 (2)定义域为, ①若时,,,所以单调递增区间为,无减区间; ②若,则 当时,;当时,所以单调递增区间为,无减区间; ③若时,由,得或 当,或时, 当时, 所以单调递增区间为, 单调递减区间为 (3)由(1)知,,且, 不等式恒成立等价于恒成立又 所以, 令(),则,所以在上单调递减, 所以,所以 20.(本题满分16分)若数列满足(n),则称为“螺旋递增数列”.(1)设数列是“螺旋递增数列”,且,(n),求;(2)设数列是“螺旋递增数列”,其前n项和为,求证:中存在连续三项成等差数列,但不存在连续四项成等差数列;(3)设数列是“螺旋上升数列”,且,(n),记数列的n项和为.问是否存在实数t,使得对任意的n恒成立?若存在,请求出实数t的取值范围;若不存在,请说明理由.解:(1),,是以为首项4为公比的等比数列,,,∵数列是“螺旋递增数列”, (2)由数列是“螺旋递增数列”得,故,∴中存在连续三项成等差数列;.Com](注:给出具体三项也可) 假设中存在连续四项成等差数列,则,即,当时,,①当时,,②由数列是“螺旋递增数列”得,③①②与③都矛盾,故假设不成立,即中不存在连续四项成等差数列. (3)∵,,是以为首项为公差的等差数列,,又数列是“螺旋递增数列”,故,, ①当时,,,又恒成立,恒成立,. ②当时,,,又恒成立,恒成立,. 综上①②,存在满足条件的实数,其取值范围是.
相关试卷
这是一份2024届江苏省扬州市高邮市高三上学期10月学情调研数学试题含解析,共18页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
这是一份2022-2023学年江苏省南京市人民中学等校高二上学期8月阶段性学情联合调研数学试题(解析版),共15页。试卷主要包含了单选题,多选题,填空题,双空题,解答题等内容,欢迎下载使用。
这是一份2023届广西桂林市高三上学期阶段性联合检测数学(文)试题含解析,共15页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。