![2020届江苏省宿迁市重点中学高三上学期一模全真模拟数学试题(解析版)第1页](http://www.enxinlong.com/img-preview/3/3/5945696/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2020届江苏省宿迁市重点中学高三上学期一模全真模拟数学试题(解析版)第2页](http://www.enxinlong.com/img-preview/3/3/5945696/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2020届江苏省宿迁市重点中学高三上学期一模全真模拟数学试题(解析版)第3页](http://www.enxinlong.com/img-preview/3/3/5945696/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2020届江苏省宿迁市重点中学高三上学期一模全真模拟数学试题(解析版)
展开
这是一份2020届江苏省宿迁市重点中学高三上学期一模全真模拟数学试题(解析版),共14页。试卷主要包含了01等内容,欢迎下载使用。
2020届江苏省宿迁市重点中学高三上学期一模全真模拟数学(理)试题(解析版)2020.01(总分160分,考试时间120分钟)一、填空题(本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请将答案填写在答题卡相应的位置上.)1.已知全集U={1,2,3,4},集合A={1,2},B={1,3},则A(B)= .答案:{2}考点:集合的交集、补集解析:∵全集U={1,2,3,4},B={1,3}, ∴B={2,4}, ∵集合A={1,2}, ∴A(B)={2}2.已知复数z满足,其中i为虚数单位,则= .答案:考点:复数解析:由题意得,所以.3.函数(>0)的最小正周期为 .答案:π考点:三角函数的周期解析:.4.执行如图所示的伪代码,若输出的y的值为1,则输入x的值为 . 答案:﹣1考点:伪代码解析:根据伪代码可得,又输出y的值为1, 即或,解得x=﹣1.5.已知锥体的体积为,母线与底面所成角为,则该圆锥的表面积为 .答案:考点:圆锥的表面积与体积解析:设圆锥底面半径为r,又母线与底面所成角为,则母线R=2r, 求得圆锥的高为h=,则,解得r=1. 故圆锥的表面积S=.6.已知各项均为正数的等比数列的前4项和为15,且,则= .答案:4考点:等比数列的通项公式及性质解析:依题意知, ①因为,即因为等比数列的各项为正数,所以,所以,解得或(舍去),故或(舍去)将代入①式得,所以.7.从分别写有1,2,3,4的4张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡上的数字大于第二张卡片上的数的概率为 .答案:考点:等可能事件的概率解析:从4张卡片中随机先后抽取2张,共有16种可能,满足第一张卡上的数字大于第二张卡片上的数有6种情况,故概率P=.8.在等差数列中,设k,l,p,r,则k+l>p+r是的 条件.(填“充分⽽不必要”、“必要⽽不充分”、“充要条件”或“既不充分也不必要”中的一个)答案:既不充分也不必要考点:充要条件的判断解析:在等差数0,0,0,0,……,中,3+4>1+2,则不成立,即充分性不成立; 在等差数列中,设公差为d,则,,由,得>,即>,当d<0时,<,即k+l<p+r,即必要性不成立所以k+l>p+r是的既不充分也不必要条件9.在平面直角坐标系xOy中,双曲线C:(a>0)的右顶点到双曲线的一条渐近线的距离为,则双曲线的离心率为 .答案:考点:双曲线的性质解析:双曲线C:(a>0)的右顶点为(a,0),设右顶点到双曲线的一条渐近线的距离为d,其中渐近线方程为,化为一般式为,则d=,解得a=3(负值已舍去),∴,c=5,故离心率e=.10.已知(0,),,则= .答案:考点:二倍角公式,同角三角函数关系式解析:∵, ∴4sincos=2cos2, ∵(0,),故cos>0,sin>0, ∴cos=2sin,又sin2+cos2=1,且sin>0, 故求得=.11.若实数a,b满足,则的取值范围是 .答案:[,0]考点:线性规划解析:12.已知函数,,={,},其中max{a,b}表示a,b中最大的数.若>e对xR恒成立,则实数t的取值范围是 .答案:t<﹣1考点:函数与不等式解析: 由图可知, 13.已知圆O1:(x+2)2+y2=1,圆O2:(x﹣2)2+y2=1,若在圆O1上存在点M、圆O2上存在点N使得点P(,3)满足:PM=PN.则实数的取值范围是 .答案:考点:圆的方程解析:由题意得:,故PO1≤PO2+2, , ,.14.已知△ABC的内角A、B、C的对边分别为a、b、c,且cosA=,I为△ABC内部的一点,且.若,则x+y的最大值为 .答案:考点:平面向量解析: 二、解答题(本大题共6小题,共计90分.请在答题纸指定区域内作答,解答应写出文字说明,证明过程或演算步骤.)15.(本题满分14分)在△ABC中,内角A、B、C的对边分别为a、b、c,已知asinA=4bsinB,ac=(a2﹣b2 ﹣c2).(1)求cosA的值;(2)求sin(2B﹣A)的值.解:(1)由及得,由及余弦定理,可得.(2)由(1)可得,代入,可得.由(1)知,为钝角,所以,所以,,故.16.(本题满分14分)如图,直四棱柱ABCD—A1B1C1D1的底面四边形ABCD是菱形,AA1=4,AB=2,∠BAD =60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求三棱锥A1—AMD的体积.(2).17.(本题满分14分)已知椭圆Γ:的左、右焦点分别为F1、F2,过F2的直线l与椭圆Γ交于P、Q 两点.(1)求△FPQ的周长;(2)设直线l不平行于坐标轴,点R为点P关于x轴的对称点,直线QR与x轴交于点N.求△QF2N面积的最大值.解:(2)18.(本题满分16分)如图,长途车站P与地铁站O的距离为千米,从地铁站O出发有两条道路l1,l2,经测量 l1,l2的夹角为,OP与l1夹角满足tan=(其中0<<),现要经过P修一条直路分别与道路l1,l2交汇于A,B两点,并在点A,B处设立公共自行车停放点.(1)已知修建道路PA,PB的单位造价分别为2m元/千米和m元/千米,若两段道路的总造价相等,求此时点A,B之间的距离;(2)考虑环境因素,需要对OA,OB段道路进行翻修,OA,OB段的翻修单价分别为n元/千米和n元/千米,要使两段道路的翻修总价最少,试确定点A,B的位置.19.(本题满分16分)已知数列与满足:,,且,.(1)求,,的值;(2)设,,证明:是等比数列;(3)设,,证明:().20.(本题满分16分)已知函数.(1)求曲线在处的切线方程;(2)当时,求函数的零点个数;(3)若函数在[1,)上是增函数,求证:.解:(1)函数的定义域为,对函数 求导可得: ,当 时, ,且 ,则曲线在的切线方程为,即 。(2)设,则恒成立,则函数在上单调递增,因为,则在上恒成立,即在上恒成立,因此函数在上单调递增,又因为,,则函数在上只有一个零点,且该零点存在于范围内。(3)因为函数在上是增函数,且定义域为 ,对函数求导可得:在上恒成立,对不等式变形化简可得:,,在上恒成立。当时,成立;当时,恒成立,即满足 。令(),则,由(2)可知,存在一个,使,即,则。当时,,,单调递减;当时,,,单调递增,则 ,因此。在内取和 ,且,,因此 。又因为,当时,恒成立,则在上单调递增,则,则 ,故。
相关试卷
这是一份2024海南省高三上学期高考全真模拟卷(二)数学试题含解析,文件包含Unit13WeretryingtosavetheearthSectionB3a-Selfcheckpptx、核心素养目标人教版初中英语九年级全册Unit13WeretryingtosavetheearthSectionB3a-Selfcheck教案docx、核心素养目标人教版初中英语九年级全册Unit13WeretryingtosavetheearthSectionB3a-Selfcheck同步练习docx、HwVideoEditor_2021_04_12_233133681mp4等4份课件配套教学资源,其中PPT共38页, 欢迎下载使用。
这是一份2022-2023学年江苏省宿迁市第一高级中学高一上学期期中模拟数学试题(二)(解析版),共14页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
这是一份2023届江苏省宿迁市沭阳县建陵高级中学高三上学期期中数学试题(解析版),共23页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。