所属成套资源:高考数学(理数)冲刺大题提分(讲义+练习)大题精做01-10(含答案详解)
高考数学(理数)冲刺大题提分(讲义+练习)大题精做02《数列》(含答案详解)
展开
这是一份高考数学(理数)冲刺大题提分(讲义+练习)大题精做02《数列》(含答案详解),共6页。
【例题】数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(1)证明:数列 SKIPIF 1 < 0 为等比数列,并求 SKIPIF 1 < 0 ;
(2)若 SKIPIF 1 < 0 ,求数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 .
解:(1) SKIPIF 1 < 0 , SKIPIF 1 < 0 得 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
故此数列为 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,, SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ; SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,
∵ SKIPIF 1 < 0 也适合,故 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,∴数列 SKIPIF 1 < 0 为等比数列.
(2) SKIPIF 1 < 0
SKIPIF 1 < 0 .
已知数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(1)求 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 的值;
(2)证明数列 SKIPIF 1 < 0 为等差数列;
(3)设 SKIPIF 1 < 0 ,求数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 .
已知等差数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,数列 SKIPIF 1 < 0 为正项等比数列,
且 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(1)求数列 SKIPIF 1 < 0 和 SKIPIF 1 < 0 的通项公式;
(2)若 SKIPIF 1 < 0 ,设 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 .
已知数列 SKIPIF 1 < 0 是首项为 SKIPIF 1 < 0 ,公比为 SKIPIF 1 < 0 的等比数列,设 SKIPIF 1 < 0 ,
数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 .
(1)求证:数列 SKIPIF 1 < 0 是等差数列;
(2)求数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 .
数列{an}中,a1=2,an+1=eq \f(n+1,2n)an(n∈N*).
(1)证明:数列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(an,n)))是等比数列,并求数列{an}的通项公式;
(2)设bn=eq \f(an,4n-an),若数列{bn}的前n项和是Tn,求证:Tn<2.
设正项等比数列{an}中,a4=81,且a2,a3的等差中项为(a1+a2).
(1)求数列{an}的通项公式;
(2)若bn=lg3a2n-1,数列{bn}的前n项和为Sn,数列{cn}满足cn=,
Tn为数列{cn}的前n项和,求Tn.
\s 0 答案解析
解:(1) SKIPIF 1 < 0 , SKIPIF 1 < 0 得 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 的值分别为 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(2)证明:由 SKIPIF 1 < 0 得 SKIPIF 1 < 0 ,∴ SKIPIF 1 < 0 ,
又 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
∴数列 SKIPIF 1 < 0 是首项为 SKIPIF 1 < 0 ,公差为2的等差数列.
(3)由(2)得 SKIPIF 1 < 0 ,
∴ SKIPIF 1 < 0 的通项公式为 SKIPIF 1 < 0 .
∴ SKIPIF 1 < 0 ,
∴ SKIPIF 1 < 0
SKIPIF 1 < 0 .
解:(1)设等差数列 SKIPIF 1 < 0 的公差为 SKIPIF 1 < 0 ,等比数列 SKIPIF 1 < 0 的公比为 SKIPIF 1 < 0 ,
∵ SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,∴ SKIPIF 1 < 0 ,
∴ SKIPIF 1 < 0 或 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 是正项等比数列,∴ SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
∴ SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(2)由(1)知 SKIPIF 1 < 0 ,
∴ SKIPIF 1 < 0 ,
∴ SKIPIF 1 < 0 [:]
SKIPIF 1 < 0 .
解:(1)证明:∵数列 SKIPIF 1 < 0 是首项为 SKIPIF 1 < 0 ,公比为 SKIPIF 1 < 0 的等比数列,
∴ SKIPIF 1 < 0 ,
∵ SKIPIF 1 < 0 ,∴ SKIPIF 1 < 0 ,
∵ SKIPIF 1 < 0 ,∴ SKIPIF 1 < 0 ,
∴数列 SKIPIF 1 < 0 是首项为1,公差为3的等差数列.
(2)解:∵ SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
∴ SKIPIF 1 < 0 ,
∴数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 ,
∴ SKIPIF 1 < 0 ,
∴ SKIPIF 1 < 0 ,
∴ SKIPIF 1 < 0 .
证明:(1)由题设得eq \f(an+1,n+1)=eq \f(1,2)·eq \f(an,n),
又eq \f(a1,1)=2,所以数列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(an,n)))是首项为2,公比为eq \f(1,2)的等比数列,
所以eq \f(an,n)=2×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))eq \s\up20(n-1)=22-n,an=n·22-n=eq \f(4n,2n).
(2)bn=eq \f(an,4n-an)=eq \f(\f(4n,2n),4n-\f(4n,2n))=eq \f(1,2n-1),
因为对任意n∈N*,2n-1≥2n-1,所以bn≤eq \f(1,2n-1).
所以Tn≤1+eq \f(1,2)+eq \f(1,22)+eq \f(1,23)+…+eq \f(1,2n-1)=2eq \b\lc\(\rc\)(\a\vs4\al\c1(1-\f(1,2n)))<2.
解:(1)设正项等比数列{an}的公比为q(q>0),
由题意,得解得
所以an=a1qn-1=3n.
(2)由(1)得bn=lg332n-1=2n-1,
Sn===n2,所以cn==(-),
所以Tn=[(1-)+(-)+…+(-)]=.
相关试卷
这是一份高考数学(理数)冲刺大题提分(讲义+练习)大题精做10《导数》(含答案详解),共9页。
这是一份高考数学(理数)冲刺大题提分(讲义+练习)大题精做08《不等式选讲》(含答案详解),共4页。
这是一份高考数学(理数)冲刺大题提分(讲义+练习)大题精做03《统计概率》(含答案详解),共9页。