初中数学沪科版八年级下册18.1 勾股定理课堂教学课件ppt
展开折竹抵地(源自《九章算术》) 今有竹高一丈, 风折抵地, 去本三尺.问折者高几何? 大意: 一根竹子, 原高一丈, 一阵风将竹子折断, 其竹梢恰好抵地, 抵地处距离原竹子底部3尺远. 问原来的竹子有多高?
如图所示, 有一个圆柱, 它的高等于12 cm, 底面上圆的周长等于18 cm. 在圆柱下底面的点 A 有一只蚂蚁, 它想吃到上底面上与点 A 相对的点 B 处的食物, 沿圆柱侧面爬行的最短路程是多少?
怎样计 算AB ?
在Rt△AA’B中,利用勾股定理可得,
其中AA’是圆柱体的高, A’B是底面圆周长的一半(πr)
若已知圆柱体高为12cm, 底面半径为3cm, π取3, 则:
(3)小明随身只有一个长度为20 cm的刻度尺, 他能有办法检验边 AD 是否垂直于边 AB 吗? 边 BC 与边 AB 呢?
李叔叔想要检测雕塑(如图所示)底座正面的边 AD 和边BC 是否分别垂直于底边 AB, 但他随身只带了卷尺.(1)你能替他想办法完成任务吗?
(2)李叔叔量得边 AD 长是30 cm, 边 AB 长是40 cm, 点B, D之间的距离是50 cm, 边 AD 垂直于边 AB 吗?
∴ AD 和 AB 垂直
(3) 提示: 利用勾股数, 做出直角三角形进行检验.
例 如图所示的是一个滑梯示意图, 若将滑道AC水平放置, 则刚好与 AB 一样长. 已知滑梯的高度CE=3 m, CD=1 m, 试求滑道AC的长.
在Rt△ACE中, ∠AEC=90°, 由勾股定理得 AE2+CE2=AC2, 即(x-1)2+32=x2, 解得x=5.故滑道 AC 的长度为5 m.
解: 设滑道 AC 的长度为 x m, 则AB 的长度为 x m, AE的长度为(x-1) m.
1. 如图所示, 有两棵树, 一棵高10 m, 另一棵高4 m, 两树相距8 m. 一只鸟从一棵树的树梢飞到另一棵树的树梢, 则小鸟至少飞行( )A.8 m B.10 mC.12 m D.14 m
解析: 如图所示, 设大树高为AB=10 m, 小树高为CD=4 m, 过C点作CE⊥AB于E, 则四边形EBDC是矩形, 连接AC, ∴EB=4 m,EC=8 m, AE=AB-EB=10-4=6(m), 在Rt△AEC中, AC2=AE2+CE2=62+82=102,∴ AC = 10 m. 故选B.
2.如图所示, 将一根长24 cm的筷子放入底面直径为5 cm, 高为12 cm的圆柱形水杯中, 设筷子露在杯子外面的长度为h cm, 则 h 的最小值是 ( )A.12 cm B.13 cmC.11 cm D.9 cm
解析: 如图所示, 设杯子的底面直径为a, 高为b, 筷子在杯中的长度为c, 根据勾股定理,得c2=a2+b2,∴c2=a2+b2=52+122=132,∴c=13 cm,∴h=24-13=11(cm). 故选C.
1.解决两点距离问题: 正确画出图形, 已知直角三角形两边长, 利用勾股定理求第三边长.
2.解决航海问题: 理解方向角等概念, 根据题意画出图形, 利用勾股定理或其逆定理解题.
3.解决实际问题中两线段是否垂直的问题: 以已知两线段为边构造一个三角形, 根据三边的长度, 利用勾股定理的逆定理解题.
6.解决侧面展开问题: 将立体图形的侧面展开成平面图形, 利用勾股定理解决表面距离最短的问题.
4.解决折叠问题: 正确画出折叠前、后的图形, 运用勾股定理及方程思想解题.
5.解决梯子问题: 梯子架到墙上,梯子、墙、地面可构成直角三角形, 利用勾股定理等知识解题.
解析:∵AB=6.5米, BC=2.5米, ∠C=90°,∴AC2=AB2-BC2=62, ∴AC=6米, ∴地毯的长度为AC+BC=6+2.5=8.5(米), ∴地毯的面积为 8.5×6=51(平方米). 故填51平方米.
1.某楼梯的侧面视图如图所示, 其中AB=6.5米, BC=2.5米, ∠C=90°, 楼梯的宽度为6米, 因某种活动要求铺设红色地毯, 则在AB段楼梯所铺地毯的面积应为 .
初中数学沪科版八年级下册18.1 勾股定理作业课件ppt: 这是一份初中数学沪科版八年级下册18.1 勾股定理作业课件ppt,共17页。
数学八年级下册18.2 勾股定理的逆定理备课ppt课件: 这是一份数学八年级下册18.2 勾股定理的逆定理备课ppt课件,共22页。PPT课件主要包含了c10,b15,AC8,AB17,由勾股定理得等内容,欢迎下载使用。
初中数学沪科版八年级下册18.1 勾股定理试讲课ppt课件: 这是一份初中数学沪科版八年级下册18.1 勾股定理试讲课ppt课件,文件包含181第2课时勾股定理的应用pptx、视频勾股定理应用《爱情公寓》片段mp4等2份课件配套教学资源,其中PPT共31页, 欢迎下载使用。