终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    天津市第一中学2021届高三下学期第四次月考数学(含答案) 试卷

    立即下载
    加入资料篮
    天津市第一中学2021届高三下学期第四次月考数学(含答案)第1页
    天津市第一中学2021届高三下学期第四次月考数学(含答案)第2页
    天津市第一中学2021届高三下学期第四次月考数学(含答案)第3页
    还剩18页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    天津市第一中学2021届高三下学期第四次月考数学(含答案)

    展开

    这是一份天津市第一中学2021届高三下学期第四次月考数学(含答案),共21页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
    天津市第一中学2021届高三下学期第四次月考数学试题  一、单选题1.设全集,集合,则等于(    A B C D【答案】B【分析】先计算,再与集合进行 交集运算即可求解.【详解】因为,所以所以故选:B.2.设,则A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件【答案】A【详解】,解得,由,可知的充分不必要条件,选A.3.函数的图像大致为A BC D【答案】D【详解】试题分析:因为,所以排除A,C,当函数在轴右侧靠近原点的一个较小区间时,,函数单调递增,故选D.【解析】函数图象与函数性质.4.对一批产品进行了抽样检测,测量其净重(单位:克),将所得数据分为5组:,并整理得到如下频率分布直方图,已知样本中产品净重小于100克的个数是36,则样本中产品净重落在区间内的个数为(    A90 B75 C60 D45【答案】A【分析】根据题意样本中产品净重小于100克的频率为0.3,进而得样本容量为120,再计算样本中产品净重落在区间内的个数即可.【详解】由题知:样本中产品净重小于100克的频率为因为样本中产品净重小于100克的个数是36所以样本容量为又因为样本中产品净重落在区间内的频率为所以样本中产品净重落在区间内的个数为.故选:A5.已知函数,且,则的大小关系为(    A BC D【答案】D【分析】先分析的奇偶性,然后分析的单调性,再根据自变量的大小以及正负比较出的大小关系.【详解】因为,所以定义域为且关于原点对称,又因为,所以为偶函数;时,因为均单调递增,所以上也单调递增,又因为所以,所以,所以故选:D.【点睛】思路点睛:根据函数的性质比较函数值大小关系的一般步骤:1)先分析函数的奇偶性,由以及定义域来确定;2)再分析函数的单调性,由函数解析式或者单调性定义进行判断;3)结合奇偶性将待比较的函数值的自变量转换到同一单调区间,再结合单调性即可比较出大小.6.球与棱长为的正四面体各条棱都相切,则该球的表面积为(    A B C D【答案】C【分析】采用补形的方法,将正四面体补充为正方体,由此分析出球与正方体的关系,再根据正方体的棱长求解出球的表面积.【详解】将正四面体补形为一个正方体如图所示(红色线条表示正四面体),则正四面体的棱为正方体的面对角线,因为球与正四面体的各条棱都相切,所以球与正方体的各个面都相切,所以所求的球为正方体的内切球,又因为正方体的棱长为,所以球的半径所以球的表面积为:故选:C.【点睛】关键点点睛:解答本题的关键在于找到正四面体和正方体之间的联系,将原本复杂的正四面体的棱切球问题转化为较为简单的正方体的内切球问题.7.已知抛物线上一点到其焦点的距离为5,双曲线的左顶点为A且离心率为,若双曲线的一条渐近线与直线垂直,则双曲线的方程为(    A B C D【答案】D【分析】先求出抛物线的方程,从而得到的值,根据离心率得到渐近线方程,由渐近线与直线垂直得到的值,从而可得双曲线的方程.【详解】因为到其焦点的距离为5,故,故故抛物线的方程为,故.因为离心率为,故,故根据抛物线和双曲线的对称性,不妨设在第一象限,则与渐近线垂直,故,故,故故双曲线方程为:.故选:D.【点睛】方法点睛:(1上一点到其焦点的距离为,解题中注意利用这个结论.2)如果直线与直线垂直,那么.8.已知函数的图象与轴交点的横坐标构成一个公差为的等差数列,把函数的图象沿轴向左平移个单位,横坐标伸长到原来的2倍得到函数的图象,则下列关于函数的结论,其中所有正确结论的序号是(    函数是奇函数的图象关于直线对称上是增函数时,函数的值域是A①③ B③④ C D②③④【答案】C【分析】先根据辅助角公式化简,然后利用已知条件求解出的值,再根据图象的变换求解出的解析式;根据解析式判断奇偶性;根据的值判断对称性;采用整体替换的方法判断单调性;利用换元法的思想求解出值域.【详解】因为,又的图象与轴交点的横坐标构成一个公差为的等差数列,所以,所以,所以所以向左平移个单位得到横坐标伸长到原来倍得到为非奇非偶函数,故错误;,所以的一条对称轴,故正确;因为,所以又因为上先增后减,所以上不是增函数,故错误;时,所以,此时,此时所以的值域为,故错误;故选:C.【点睛】思路点睛:求解形如的函数在指定区间上的值域或最值的一般步骤如下:1)先确定这个整体的范围;2)分析在(1)中范围下的取值情况;3)根据取值情况确定出值域或最值,并分析对应的的取值.9.已知函数,总有,使成立,则的范围是(    A B C D【答案】B【分析】根据已知条件先分析得到,然后分析的几何意义,通过分析在横坐标相等时,纵坐标竖直距离取最大值的最小值时对应的的取值,由此确定出的解析式,同时求解出,由此的范围可知.【详解】由题意可知:成立,即又对,所以可看作在横坐标相等时,纵坐标的竖直距离,,可取,所以的直线方程为平行且与相切于,所以,所以,所以切线为平行且与两条直线的距离相等时,即恰好在的中间,此时在纵坐标的竖直距离中取得最大值中的最小值,此时,则又因为,所以,所以,此时所以的范围是故选:B.【点睛】结论点睛:的几何意义:当在横坐标相等时,纵坐标的竖直距离.  二、填空题10.已知i是虚数单位,若(1i)(1bi=a,则的值为_______.【答案】2【详解】试题分析:由,可得,所以,故答案为2【解析】复数相等【名师点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数的相关基本概念,如复数的实部为、虚部为、模为、共轭复数为.11的展开式的常数项为____________【答案】【详解】试题分析:由题意得的展开式中的通项为,令,解得,所以展开式的常数项为【解析】二项式定理.12.设直线与圆相交于两点,若,则__________【答案】【分析】的圆心坐标为,半径为,利用圆的弦长公式,求出值.【详解】解:圆的圆心坐标为,半径为直线与圆相交于两点,且圆心到直线的距离解得:解得故答案为:【点睛】本题主要考查直线和圆的位置关系,考查弦长的计算,属于中档题.13.甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,则一次游戏摸出的白球不少于2个的概率为___________.【答案】【分析】根据对立事件的概率公式进行求解即可.【详解】一次游戏摸出1个白球的概率为:一次游戏摸出0个白球的概率为:因此一次游戏摸出0个白球或1个白球的概率为:所以一次游戏摸出的白球不少于2个的概率为:故答案为:14.已知,且,则的最小值为___________.【答案】【分析】由题意可得,结合和均值不等式可得的最小值,注意等号成立的条件.【详解】,且,可得:结合可得:当且仅当,即时等号成立.【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是一正——各项均为正;二定——积或和为定值;三相等——等号能否取得,若忽略了某个条件,就会出现错误.15.平行四边形中,上的动点,,则的最小值为___________.【答案】【分析】选取为基底,由已知计算可得关系,再设可表示为的函数,从而求得最小值.【详解】,则又因为,则,即解得因为,所以时,取最小值故答案为:【点睛】关键点点睛:本题解题时选取两个向量为基底,用基底表示所求向量是解题的关键. 三、解答题16的内角所对的边分别为.已知.1)求2)若,且的面积为,求.【答案】1;(2.【分析】1)先根据正弦定理将原式化简,由此得到的倍数关系,再结合正弦定理即可得到的值;2)先根据(1)的结果求解出的值,然后结合两角和的正弦公式和二倍角公式求解出的值,再根据三角形的面积公式求解出的值,结合余弦定理可求解出的值.【详解】1)因为所以由正弦定理可得,所以,故.2)由(1)知,则,所以所以的面积为,则由余弦定理得,解得.【点睛】易错点睛:利用正、余弦定理解三角形的注意事项:1)注意隐含条件的使用;2)利用正弦定理进行边角互化时,要注意结合条件判断将边转化为角的形式还是将角转化为边的形式.17.如图,四棱锥中,底面为平行四边形,是棱PD的中点,且I)求证:  )求二面角的大小;)若上一点,且直线与平面成角的正弦值为,求的值.【答案】I)见解析;( ;(1【详解】试题分析:(I),所以平面PAC(II)建立空间直角坐标系,求出两个法向量,平面MAB的法向量是平面ABC的一个法向量,求出二面角;(III),平面MAB的法向量,解得答案.试题解析:证明:(I)连结AC.因为为在中,所以,所以因为AB//CD,所以又因为地面ABCD,所以.因为所以平面PAC (II)如图建立空间直角坐标系,则因为M是棱PD的中点,所以所以. 设为平面MAB的法向量,所以,即,令,则所以平面MAB的法向量.因为平面ABCD所以是平面ABC的一个法向量.所以.因为二面角为锐二面角,所以二面角的大小为(III)因为N是棱AB上一点,所以设设直线CN与平面MAB所成角为因为平面MAB的法向量所以解得,即,所以18.椭圆的离心率.)求椭圆的方程;)如图,是椭圆的顶点,是椭圆上除顶点外的任意一点,直线轴于点,直线于点,设的斜率为的斜率为,试证明:为定值.【答案】(1) +y2=1 (2)见解析【详解】1由(1)A(-20),B(20),D(01),则直线AD方程为:;直线BP方程:,联立得直线BP和椭圆联立方程组解得P点坐标为,因为D,Nx,0),P三点共线,所以有:【解析】本题考查椭圆的标准方程、简单的几何性质,考查直线和椭圆相交问题,定值问题,考查综合解答问题的能力. 19.设是各项均为正数的等差数列,的等比中项,的前项和为.1)求的通项公式;2)设,数列的前项和为,使为整数的称为优数,求区间上所有优数之和.3)求.【答案】1;(22036;(3.【分析】1)根据等比数列的性质列出式子求出的公差即可得出通项公式;利用可得为等比数列,即得通项公式;2)求出,可得满足为整数的形成数列,可得出,求出10项和即可;3)可得,则所求即为的前n项和,利用错位相减法即可求出.【详解】1)解:设等差数列的公差为因为的等比中项,所以,即解得,因为是各项均为正数的等差数列,所以,故因为,所以两式相减得:,当时,是以2为首项,2为公比的等比数列,.2要使为整数,则应满足),即满足为整数的形成数列由题可得,解得则满足条件的优数之和为3)设即为数列的前项和,设为两式相减得:.【点睛】方法点睛:数列求和的常用方法:1)对于等差等比数列,利用公式法可直接求解;2)对于结构,其中是等差数列,是等比数列,用错位相减法求和;3)对于结构,利用分组求和法;4)对于结构,其中是等差数列,公差为,则,利用裂项相消法求和.20.已知1)求处的切线方程以及的单调性;2)对,有恒成立,求的最大整数解;3)令,若有两个零点分别为的唯一的极值点,求证:.【答案】1)切线方程为;单调递减区间为,单调递增区间为2的最大整数解为3)证明见解析【分析】1)求出函数的导数,求出即可得到切线方程,解得到单调递增区间,解得到单调递减区间,需注意在定义域范围内;2等价于,求导分析的单调性,即可求出的最大整数解;3)由,求出导函数分析其极值点与单调性,构造函数即可证明;【详解】解:(1所以定义域为所以切线方程为解得解得 所以的单调递减区间为,单调递增区间为.2等价于,所以上的递增函数,,所以,使得所以上递减,在上递增,所以的最大整数解为.3所以上单调递减,上单调递增,而要使有两个零点,要满足因为,令即:而要证只需证即证:即:只需证:,则,则上递增,上递增,.【点睛】本题考查导数的几何意义,利用导数研究函数的极值,最值以及函数的单调性,综合性比较强,属于难题.   

    相关试卷

    天津市第一中学2022-2023学年高三下学期第四次月考数学试题:

    这是一份天津市第一中学2022-2023学年高三下学期第四次月考数学试题,共10页。

    天津市第一中学2022-2023学年高三下学期第四次月考数学试题:

    这是一份天津市第一中学2022-2023学年高三下学期第四次月考数学试题,共9页。试卷主要包含了选择题等内容,欢迎下载使用。

    2022-2023学年天津市南开中学高三下学期第四次月考试题数学Word版含答案:

    这是一份2022-2023学年天津市南开中学高三下学期第四次月考试题数学Word版含答案,共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map