|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021学年中考数学二轮复习 二次函数专题二 二次函数与线段有关的问题(含解析)
    立即下载
    加入资料篮
    2021学年中考数学二轮复习 二次函数专题二 二次函数与线段有关的问题(含解析)01
    2021学年中考数学二轮复习 二次函数专题二 二次函数与线段有关的问题(含解析)02
    2021学年中考数学二轮复习 二次函数专题二 二次函数与线段有关的问题(含解析)03
    还剩8页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021学年中考数学二轮复习 二次函数专题二 二次函数与线段有关的问题(含解析)

    展开
    这是一份2021学年中考数学二轮复习 二次函数专题二 二次函数与线段有关的问题(含解析),共11页。

    【典例1】已知抛物线y=ax2+bx+6(a≠0)交x轴于点A(6,0)和点B(-1,0),交y轴于点C.
    (1)求抛物线的解析式和顶点坐标;
    (2)如图(1),点P是抛物线上位于直线AC上方的动点,过点P分别作x轴,y轴的平行线,交直线AC于点D,E,当PD+PE取最大值时,求点P的坐标;
    (3)如图(2),点M为抛物线对称轴l上一点,点N为抛物线上一点,当直线AC垂直平分△AMN的边MN时,求点N的坐标.

    【典例2】如图1-1,抛物线y=x2-2x-3与x轴交于A、B两点,与y轴交于点C,点P是抛物线对称轴上的一个动点,如果△PAC的周长最小,求点P的坐标.
    图1-1
    【典例3】如图,抛物线与y轴交于点A,B是OA的中点.一个动点G从点B出发,先经过x轴上的点M,再经过抛物线对称轴上的点N,然后返回到点A.如果动点G走过的路程最短,请找出点M、N的位置,并求最短路程.
    图2-1
    【典例4】如图3-1,抛物线与y轴交于点A,顶点为B.点P是x轴上的一个动点,求线段PA与PB中较长的线段减去较短的线段的差的最小值与最大值,并求出相应的点P的坐标.
    图3-1
    【典例5】如图,抛物线的顶点为A(h,﹣1),与y轴交于点B(0,﹣),点F(2,1)为其对称轴上的一个定点.
    (1)求这条抛物线的函数解析式;
    (2)已知直线l是过点C(0,﹣3)且垂直于y轴的定直线,若抛物线上的任意一点P(m,n)到直线l的距离为d,求证:PF=d;
    (3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使△DFQ的周长最小,并求此时△DFQ周长的最小值及点Q的坐标.
    二 二次函数与线段问题
    【典例1】已知抛物线y=ax2+bx+6(a≠0)交x轴于点A(6,0)和点B(-1,0),交y轴于点C.
    (1)求抛物线的解析式和顶点坐标;
    (2)如图(1),点P是抛物线上位于直线AC上方的动点,过点P分别作x轴,y轴的平行线,交直线AC于点D,E,当PD+PE取最大值时,求点P的坐标;
    (3)如图(2),点M为抛物线对称轴l上一点,点N为抛物线上一点,当直线AC垂直平分△AMN的边MN时,求点N的坐标.
    【答案】(1)y=-x2+5x+6,顶点坐标为(,);(2)P(3,12);(3)(,)或(,)
    【解析】
    【分析】
    (1)将点A,B坐标代入抛物线解析式中,解方程组即可得出结论;
    (2)先求出OA=OC=6,进而得出∠OAC=45°,进而判断出PD=PE,即可得出当PE的长度最大时,PE+PD取最大值,设出点E坐标,表示出点P坐标,建立PE=-t2+6t=-(t-3)2+9,即可得出结论;
    (3)先判断出NF∥x轴,进而求出点N的纵坐标,即可建立方程求解得出结论.
    【详解】
    解:(1)∵抛物线y=ax2+bx+6经过点A(6,0),B(-1,0),

    解得a=-1,b=5,
    ∴抛物线的解析式为y=-x2+5x+6.
    ∵y=-x2+5x+6=-(x)2+,
    ∴抛物线的解析式为y=-x2+5x+6,顶点坐标为(,).
    (2)由(1)知,抛物线的解析式为y=-x2+5x+6,
    ∴C(0,6),∴OC=6.
    ∵A(6,0),
    ∴OA=6,∴OA=OC,∴∠OAC=45°.
    ∵PD平行于x轴,PE平行于y轴,
    ∴∠DPE=90°,∠PDE=∠DAO=45°,
    ∴∠PED=45°,
    ∴∠PDE=∠PED,
    ∴PD=PE,
    ∴PD+PE=2PE,
    ∴当PE的长度最大时,PE+PD取最大值.
    设直线AC的函数关系式为y=kx+d,
    把A(6,0),C(0,6)代入得
    解得k=-1,d=6,
    ∴直线AC的解析式为y=-x+6.
    设E(t,-t+6)(0<t<6),则P(t,-t2+5t+6),
    ∴PE=-t2+5t+6-(-t+6)=-t2+6t=-(t-3)2+9.
    ∵-1<0,∴当t=3时,PE最大,此时-t2+5t+6=12,
    ∴P(3,12).
    (3)如答图,设直线AC与抛物线的对称轴l的交点为F,连接NF.
    ∵点F在线段MN的垂直平分线AC上,
    ∴FM=FN,∠NFC=∠MFC.
    ∵l∥y轴,
    ∴∠MFC=∠OCA=45°,
    ∴∠MFN=∠NFC+∠MFC=90°,
    ∴NF∥x轴.
    由(2)知直线AC的解析式为y=-x+6,
    当x=时,y=,
    ∴F(,),
    ∴点N的纵坐标为.
    ∵点N在抛物线上,
    ∴-x2+5x+6=,解得,x1=或x2=,
    ∴点N的坐标为(,)或(,).
    【点睛】
    此题是二次函数综合题,主要考查了待定系数法,解一元二次方程,(2)中判断出PD=PE,(3)中NF∥x轴是解本题的关键.

    【典例2】如图1-1,抛物线y=x2-2x-3与x轴交于A、B两点,与y轴交于点C,点P是抛物线对称轴上的一个动点,如果△PAC的周长最小,求点P的坐标.
    图1-1
    【解析】如图1-2,把抛物线的对称轴当作河流,点A与点B对称,连结BC,那么在△PBC中,PB+PC总是大于BC的.如图1-3,当点P落在BC上时,PB+PC最小,因此PA+PC最小,△PAC的周长也最小.
    由y=x2-2x-3,可知OB=OC=3,OD=1.所以DB=DP=2,因此P(1,-2).
    图1-2 图1-3
    【典例3】如图,抛物线与y轴交于点A,B是OA的中点.一个动点G从点B出发,先经过x轴上的点M,再经过抛物线对称轴上的点N,然后返回到点A.如果动点G走过的路程最短,请找出点M、N的位置,并求最短路程.
    图2-1
    【解析】如图2-2,按照“台球两次碰壁”的模型,作点A关于抛物线的对称轴对称的点A′,作点B关于x轴对称的点B′,连结A′B′与x轴交于点M,与抛物线的对称轴交于点N.
    在Rt△AA′B′中,AA′=8,AB′=6,所以A′B′=10,即点G走过的最短路程为10.根据相似比可以计算得到OM=,MH=,NH=1.所以M(, 0),N(4, 1).
    图2-2
    【典例4】如图3-1,抛物线与y轴交于点A,顶点为B.点P是x轴上的一个动点,求线段PA与PB中较长的线段减去较短的线段的差的最小值与最大值,并求出相应的点P的坐标.
    图3-1
    【解析】题目读起来像绕口令,其实就是求|PA-PB|的最小值与最大值.
    由抛物线的解析式可以得到A(0, 2),B(3, 6).设P(x, 0).
    绝对值|PA-PB|的最小值当然是0了,此时PA=PB,点P在AB的垂直平分线上(如图3-2).解方程x2+22=(x-3)2+62,得.此时P.
    在△PAB中,根据两边之差小于第三边,那么|PA-PB|总是小于AB了.如图3-3,当点P在BA的延长线上时,|PA-PB|取得最大值,最大值AB=5.此时P.
    图3-2 图3-3
    【典例5】如图,抛物线的顶点为A(h,﹣1),与y轴交于点B(0,﹣),点F(2,1)为其对称轴上的一个定点.
    (1)求这条抛物线的函数解析式;
    (2)已知直线l是过点C(0,﹣3)且垂直于y轴的定直线,若抛物线上的任意一点P(m,n)到直线l的距离为d,求证:PF=d;
    (3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使△DFQ的周长最小,并求此时△DFQ周长的最小值及点Q的坐标.
    【分析】(1)由题意抛物线的顶点A(2,﹣1),可以假设抛物线的解析式为y=a(x﹣2)2﹣1,把点B坐标代入求出a即可.
    (2)由题意P(m,m2﹣m﹣),求出d2,PF2(用m表示)即可解决问题.
    (3)如图,过点Q作QH⊥直线l于H,过点D作DN⊥直线l于N.因为△DFQ的周长=DF+DQ+FQ,DF是定值==2,推出DQ+QF的值最小时,△DFQ的周长最小,再根据垂线段最短解决问题即可.
    【解答】(1)解:由题意抛物线的顶点A(2,﹣1),可以假设抛物线的解析式为y=a(x﹣2)2﹣1,
    ∵抛物线经过B(0,﹣),
    ∴﹣=4a﹣1,
    ∴a=,
    ∴抛物线的解析式为y=(x﹣2)2﹣1.
    (2)证明:∵P(m,n),
    ∴n=(m﹣2)2﹣1=m2﹣m﹣,
    ∴P(m,m2﹣m﹣),
    ∴d=m2﹣m﹣﹣(﹣3)=m2﹣m+,
    ∵F(2,1),
    ∴PF==,
    ∵d2=m4﹣m3+m2﹣m+,PF2=m4﹣m3+m2﹣m+,
    ∴d2=PF2,
    ∴PF=d.
    (3)如图,过点Q作QH⊥直线l于H,过点D作DN⊥直线l于N.
    ∵△DFQ的周长=DF+DQ+FQ,DF是定值==2,
    ∴DQ+QF的值最小时,△DFQ的周长最小,
    ∵QF=QH,
    ∴DQ+DF=DQ+QH,
    根据垂线段最短可知,当D,Q,H共线时,DQ+QH的值最小,此时点H与N重合,点Q在线段DN上,
    ∴DQ+QH的最小值为3,
    ∴△DFQ的周长的最小值为2+3,此时Q(4,﹣)
    【点评】本题属于二次函数综合题,考查了待定系数法,两点间距离公式,垂线段最短等知识,解题的关键是学会利用参数解决问题,学会用转化的思想思考问题,属于中考常考题型
    相关试卷

    2022年中考数学专题复习类型二 二次函数与线段有关的问题(解析版): 这是一份2022年中考数学专题复习类型二 二次函数与线段有关的问题(解析版),共7页。

    2021学年中考数学二轮复习 二次函数专题八 二次函数与平行四边形有关的问题(含解析): 这是一份2021学年中考数学二轮复习 二次函数专题八 二次函数与平行四边形有关的问题(含解析),共28页。

    2021学年中考数学二轮复习 二次函数专题九 二次函数与菱形有关的问题(含解析): 这是一份2021学年中考数学二轮复习 二次函数专题九 二次函数与菱形有关的问题(含解析),共35页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map