2021学年中考数学二轮复习 二次函数专题十二 二次函数与圆的问题(含解析)
展开(1)求该抛物线的解析式;
(2)在抛物线上是否存在一点Q,使得△QCO是等边三角形?若存在,求出点Q的坐标;若不存在,请说明理由;
(3)以M为圆心,MP为半径作⊙M,当⊙M与坐标轴相切时,求出⊙M的半径.
【典例2】将抛物线向下平移6个单位长度得到抛物线,再将抛物线向左平移2个单位长度得到抛物线.
(1)直接写出抛物线,的解析式;
(2)如图(1),点在抛物线对称轴右侧上,点在对称轴上,是以为斜边的等腰直角三角形,求点的坐标;
(3)如图(2),直线(,为常数)与抛物线交于,两点,为线段的中点;直线与抛物线交于,两点,为线段的中点.求证:直线经过一个定点.
【典例3】如图,在平面直角坐标系中,直线与x轴交于点A,与y轴交于点B,抛物线过点B且与直线相交于另一点.
(1)求抛物线的解析式;
(2)点P是抛物线上的一动点,当时,求点P的坐标;
(3)点在x轴的正半轴上,点是y轴正半轴上的一动点,且满足.
①求m与n之间的函数关系式;
②当m在什么范围时,符合条件的N点的个数有2个?
【典例4】如图10-1,已知点P是抛物线上的一个点,点D、E的坐标分别为(0, 1)、(1, 2),连结PD、PE,求PD+PE的最小值.
图10-1
【典例5】如图,在直角坐标系中,四边形OABC是平行四边形,经过A(﹣2,0),B,C三点的抛物线y=ax2+bx+(a<0)与x轴的另一个交点为D,其顶点为M,对称轴与x轴交于点E.
(1)求这条抛物线对应的函数表达式;
(2)已知R是抛物线上的点,使得△ADR的面积是▱OABC的面积的,求点R的坐标;
(3)已知P是抛物线对称轴上的点,满足在直线MD上存在唯一的点Q,使得∠PQE=45°,求点P的坐标.
十二 二次函数与圆的问题
【典例1】如图,抛物线y=ax2+x+c经过点A(﹣1,0)和点C (0,3)与x轴的另一交点为点B,点M是直线BC上一动点,过点M作MP∥y轴,交抛物线于点P.
(1)求该抛物线的解析式;
(2)在抛物线上是否存在一点Q,使得△QCO是等边三角形?若存在,求出点Q的坐标;若不存在,请说明理由;
(3)以M为圆心,MP为半径作⊙M,当⊙M与坐标轴相切时,求出⊙M的半径.
【答案】(1)y=﹣x2+x+3;(2)不存在,理由见解析;(3)⊙M的半径为或
【解析】
【分析】
(1)已知抛物线y=ax2+x+c经过点A(﹣1,0)和点C(0,3),利用待定系数法即可求得抛物线解析式;
(2)在抛物线上找到一点Q,使得△QCO是等边三角形,过点Q作OM⊥OB于点M,过点Q作QN⊥OC于点N,根据△QCO是等边三角形,求得Q点坐标,再验证Q点是否在抛物线上;
(3)分两种情况①当⊙M与y轴相切,如图所示,令M点横坐标为t,PM=t,将PM用t表示出来,列出关于t的一元二次方程,求得t,进而求得半径;②⊙M与x轴相切,过点M作MN⊥OB于N,如图所示,令M点横坐标为m,因为PN=2MN,列出关于m的一元二次方程,即可求出m,进而求得⊙M的半径.
【详解】
(1)∵抛物线y=ax2+x+c经过点A(﹣1,0)和点C(0,3)
∴
解得
∴该抛物线的解析式为:y=﹣x2+x+3
故答案为:y=﹣x2+x+3
(2)在抛物线上找到一点Q,使得△QCO是等边三角形,过点Q作OM⊥OB于点M,过点Q作QN⊥OC于点N
∵△QCO是等边三角形,OC=3
∴CN=
∴NQ=
即Q(,)
当x=时,y=﹣×()2+×+3=≠
∴Q(,)不在抛物线上
y=﹣x2+x+3
故答案为:不存在,理由见解析
(3)①⊙M与y轴相切,如图所示
∵y=﹣x2+x+3
当y=0时,﹣x2+x+3=0
解得x1=-1,x2=4
∴B(4,0)
令直线BC的解析式为y=kx+b
解得
∴直线BC的解析式为
令M点横坐标为t
∵MP∥y轴,⊙M与y轴相切
∴t=﹣t2+t+3-
解得t=
⊙M的半径为
②⊙M与x轴相切,过点M作MN⊥OB于N,如图所示
令M点横坐标为m
∵PN=2MN
∴
解得m=1或m=4(舍去)
∴⊙M的半径为:
故答案为:⊙M的半径为或
【点睛】
本题考查了待定系数法求二次函数解析式,是二次函数的综合题,涉及了二次函数与几何问题,二次函数与圆的问题,其中考查了圆切线的性质.
【典例2】将抛物线向下平移6个单位长度得到抛物线,再将抛物线向左平移2个单位长度得到抛物线.
(1)直接写出抛物线,的解析式;
(2)如图(1),点在抛物线对称轴右侧上,点在对称轴上,是以为斜边的等腰直角三角形,求点的坐标;
(3)如图(2),直线(,为常数)与抛物线交于,两点,为线段的中点;直线与抛物线交于,两点,为线段的中点.求证:直线经过一个定点.
【答案】(1)抛物线的解析式为: y=x2-4x-2;抛物线的解析式为:y=x2-6;(2)点的坐标为(5,3)或(4,-2);(3)直线经过定点(0,2)
【解析】
【分析】
(1)根据函数图象上下平移:函数值上加下减;左右平移:自变量左加右减写出函数解析式并化简即可;
(2)先判断出点A、B、O、D四点共圆,再根据同弧所对的圆周角相等得到∠BDA=∠BOA=45°,从而证出是等腰直角三角形.设点A的坐标为(x,x2-4x-2),把DC和AC用含x的代数式表示出来,利用DC=AC列方程求解即可,注意有两种情况;
(3)根据直线(,为常数)与抛物线交于,两点,联立两个解析式,得到关于x的一元二次方程,根据根与系数的关系求出点M的横坐标,进而求出纵坐标,同理求出点N的坐标,再用待定系数法求出直线MN的解析式,从而判断直线MN经过的定点即可.
【详解】
解:(1)∵抛物线向下平移6个单位长度得到抛物线,再将抛物线向左平移2个单位长度得到抛物线,
∴抛物线的解析式为:y=(x-2)2-6,即y=x2-4x-2,
抛物线的解析式为:y=(x-2+2)2-6,即y=x2-6.
(2)如下图,过点A作AC⊥x轴于点C,连接AD,
∵是等腰直角三角形,
∴∠BOA =45°,
又∵∠BDO=∠BAO=90°,
∴点A、B、O、D四点共圆,
∴∠BDA=∠BOA=45°,
∴∠ADC=90°-∠BDA=45°,
∴是等腰直角三角形,
∴DC=AC.
∵点在抛物线对称轴右侧上,点在对称轴上,
∴抛物线的对称轴为x=2,
设点A的坐标为(x,x2-4x-2),
∴DC=x-2,AC= x2-4x-2,
∴x-2= x2-4x-2,
解得:x=5或x=0(舍去),
∴点A的坐标为(5,3);
同理,当点B、点A在x轴的下方时,
x-2= -(x2-4x-2),
x=4或x=-1(舍去),
∴点的坐标为(4,-2),
综上,点的坐标为(5,3)或(4,-2).
(3)∵直线(,为常数)与抛物线交于,两点,
∴,
∴x2-kx-6=0,
设点E的横坐标为xE,点F的横坐标为xF,
∴xE+xF=k,
∴中点M的横坐标xM==,
中点M的纵坐标yM=kx=,
∴点M的坐标为(,);
同理可得:点N的坐标为(,),
设直线MN的解析式为y=ax+b(a≠0),
将M(,)、N(,)代入得:
,
解得:,
∴直线MN的解析式为y= ·x+2(),
不论k取何值时(),当x=0时,y=2,
∴直线经过定点(0,2).
【点睛】
本题考查二次函数综合应用,熟练掌握图象平移的规律、判断点A、B、O、D四点共圆的方法、用待定系数法求函数解析式的步骤是解题的关键.
【典例3】如图,在平面直角坐标系中,直线与x轴交于点A,与y轴交于点B,抛物线过点B且与直线相交于另一点.
(1)求抛物线的解析式;
(2)点P是抛物线上的一动点,当时,求点P的坐标;
(3)点在x轴的正半轴上,点是y轴正半轴上的一动点,且满足.
①求m与n之间的函数关系式;
②当m在什么范围时,符合条件的N点的个数有2个?
【答案】(1);(2)或(3,)或(-2,-3);(3)①;②0<m<
【解析】
【分析】
(1)利用一次函数求出A和B的坐标,结合点C坐标,求出二次函数表达式;
(2)当点P在x轴上方时,点P与点C重合,当点P在x轴下方时,AP与y轴交于点Q,求出AQ表达式,联立二次函数,可得交点坐标,即为点P;
(3)①过点C作CD⊥x轴于点D,证明△MNO∽△NCD,可得,整理可得结果;
②作以MC为直径的圆E,根据圆E与线段OD的交点个数来判断M的位置,即可得到m的取值范围.
【详解】
解:(1)∵直线与x轴交于点A,与y轴交于点B,
令x=0,则y=2,令y=0,则x=4,
∴A(4,0),B(0,2),
∵抛物线经过B(0,2),,
∴,解得:,
∴抛物线的表达式为:;
(2)当点P在x轴上方时,点P与点C重合,满足,
∵,
∴,
当点P在x轴下方时,如图,AP与y轴交于点Q,
∵,
∴B,Q关于x轴对称,
∴Q(0,-2),又A(4,0),
设直线AQ的表达式为y=px+q,代入,
,解得:,
∴直线AQ的表达式为:,联立得:
,解得:x=3或-2,
∴点P的坐标为(3,)或(-2,-3),
综上,当时,点P的坐标为:或(3,)或(-2,-3);
(3)①如图,∠MNC=90°,过点C作CD⊥x轴于点D,
∴∠MNO+∠CND=90°,
∵∠OMN+∠MNO=90°,
∴∠CND=∠OMN,又∠MON=∠CDN=90°,
∴△MNO∽△NCD,
∴,即,
整理得:;
②如图,∵∠MNC=90°,
以MC为直径画圆E,
∵,
∴点N在线段OD上(不含O和D),即圆E与线段OD有两个交点(不含O和D),
∵点M在y轴正半轴,
当圆E与线段OD相切时,
有NE=MC,即NE2=MC2,
∵M(0,m),,
∴E(,),
∴=,
解得:m=,
当点M与点O重合时,如图,
此时圆E与线段OD(不含O和D)有一个交点,
∴当0<m<时,圆E与线段OD有两个交点,
故m的取值范围是:0<m<.
【点睛】
本题是二次函数综合,考查了求二次函数表达式,相似三角形的判定和性质,圆周角定理,一次函数表达式,难度较大,解题时要充分理解题意,结合图像解决问题.
【典例4】如图10-1,已知点P是抛物线上的一个点,点D、E的坐标分别为(0, 1)、(1, 2),连结PD、PE,求PD+PE的最小值.
图10-1
【解析】点P不在一条笔直的河流上,没有办法套用“牛喝水”的模型.
设P,那么PD2=.所以PD=.
如图10-2,的几何意义可以理解为抛物线上的动点P到直线y=-1的距离PH.所以PD=PH.因此PD+PE就转化为PH+PE.
如图10-3,当P、E、H三点共线,即PH⊥x轴时,PH+PE的最小值为3.
高中数学会学到,抛物线是到定点的距离等于到定直线的距离的点的集合,在中考数学压轴题里, 如果要用到这个性质,最好铺垫一个小题,求证PD=PH.
图10-2 图10-3
【典例5】如图,在直角坐标系中,四边形OABC是平行四边形,经过A(﹣2,0),B,C三点的抛物线y=ax2+bx+(a<0)与x轴的另一个交点为D,其顶点为M,对称轴与x轴交于点E.
(1)求这条抛物线对应的函数表达式;
(2)已知R是抛物线上的点,使得△ADR的面积是▱OABC的面积的,求点R的坐标;
(3)已知P是抛物线对称轴上的点,满足在直线MD上存在唯一的点Q,使得∠PQE=45°,求点P的坐标.
【答案】解:(1)OA=2=BC,故函数的对称轴为x=1,则x=﹣=1①,
将点A的坐标代入抛物线表达式得:0=4a﹣2b+②,
联立①②并解得,故抛物线的表达式为:y=﹣x2+x+③;
(2)由抛物线的表达式得,点M(1,3)、点D(4,0);
∵△ADR的面积是▱OABC的面积的,
∴×AD×|yR|=×OA×OB,则×6×|yR|=×2×,解得:yR=±④,
联立④③并解得,或
故点R的坐标为(1+,4)或(1﹣,4)或(1+,﹣4)或(1﹣,﹣4);
(3)作△PEQ的外接圆R,
∵∠PQE=45°,故∠PRE=90°,
则△PRE为等腰直角三角形,
当直线MD上存在唯一的点Q,则RQ⊥MD,
点M、D的坐标分别为(1,4)、(4,0),
则ME=4,ED=4﹣1=3,则MD=5,
过点R作RH⊥ME于点H,
设点P(1,2m),则PH=HE=HR=m,则圆R的半径为m,则点R(1+m,m),
S△MED=S△MRD+S△MRE+S△DRE,即×EM•ED=×MD×RQ+×ED•yR+×ME•RH,
∴×4×3=×5×m+×4×m+×3×m,解得m=60﹣84,故点P(1,120﹣168).
【分析】(1)OA=2=BC,故函数的对称轴为x=1,则x=﹣=1①,将点A的坐标代入抛物线表达式得:0=4a﹣2b+②,联立①②即可求解;(2)△ADR的面积是▱OABC的面积的,则×AD×|yR|=×OA×OB,则×6×|yR|=×2×,即可求解;
(3)∠PQE=45°,故∠PRE=90°,则△PRE为等腰直角三角形,当直线MD上存在唯一的点Q,则RQ⊥MD,即可求解.
【点评】本题考查的是二次函数综合运用,涉及到一次函数的性质、圆的基本知识、面积的计算等,综合性强,难度较大.
题型九 二次函数综合题 类型十二 二次函数与圆的问题(专题训练)-中考数学二轮复习讲练测(全国通用): 这是一份题型九 二次函数综合题 类型十二 二次函数与圆的问题(专题训练)-中考数学二轮复习讲练测(全国通用),文件包含题型九二次函数综合题类型十二二次函数与圆的问题专题训练解析版docx、题型九二次函数综合题类型十二二次函数与圆的问题专题训练原卷版docx等2份试卷配套教学资源,其中试卷共76页, 欢迎下载使用。
2022年中考数学专题复习类型十二 二次函数与圆的问题(解析版): 这是一份2022年中考数学专题复习类型十二 二次函数与圆的问题(解析版),共14页。
2021学年中考数学二轮复习 二次函数专题一 二次函数公共点问题(含解析): 这是一份2021学年中考数学二轮复习 二次函数专题一 二次函数公共点问题(含解析),共16页。