终身会员
搜索
    上传资料 赚现金

    专题2.1 导数起源于切线,曲切联系需熟练-2020届高考数学压轴题讲义(解答题)(解析版)

    立即下载
    加入资料篮
    专题2.1 导数起源于切线,曲切联系需熟练-2020届高考数学压轴题讲义(解答题)(解析版)第1页
    专题2.1 导数起源于切线,曲切联系需熟练-2020届高考数学压轴题讲义(解答题)(解析版)第2页
    专题2.1 导数起源于切线,曲切联系需熟练-2020届高考数学压轴题讲义(解答题)(解析版)第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题2.1 导数起源于切线,曲切联系需熟练-2020届高考数学压轴题讲义(解答题)(解析版)

    展开

    这是一份专题2.1 导数起源于切线,曲切联系需熟练-2020届高考数学压轴题讲义(解答题)(解析版),共19页。
    题型综述导数的几何意义:函数处的导数就是曲线在点处的切线的斜率,即【注】曲线的切线的求法:若已知曲线过点P(x0y0),求曲线过点P的切线,则需分点P(x0y0)是切点和不是切点两种情况求解.1)当点P(x0y0)是切点时,切线方程为yy0=f ′(x0)(xx0)2)当点P(x0y0)不是切点时,可分以下几步完成:第一步:设出切点坐标P′(x1f (x1))第二步:写出过P′(x1f (x1))的切线方程为yf (x1)=f ′ (x1)(xx1)第三步:将点P的坐标(x0y0)代入切线方程求出x1第四步:将x1的值代入方程yf (x1)=f ′(x1)(xx1),可得过P(x0y0)的切线方程.求曲线y=f (x)的切线方程的类型及方法1)已知切点P(x0, y0),求y=f (x)过点P的切线方程:求出切线的斜率f(x0),由点斜式写出方程;2)已知切线的斜率为k,求y=f (x)的切线方程:设切点P(x0, y0),通过方程k=f ′(x0)解得x0,再由点斜式写出方程;3)已知切线上一点(非切点),求y=f (x)的切线方程:设切点P(x0, y0),利用导数求得切线斜率f ′(x0),再由斜率公式求得切线斜率,列方程()解得x0,最后由点斜式或两点式写出方程.4)若曲线的切线与已知直线平行或垂直,求曲线的切线方程时,先由平行或垂直关系确定切线的斜率,再由k=f ′(x0)求出切点坐标(x0, y0),最后写出切线方程.5在点P处的切线即是以P为切点的切线,P一定在曲线上.过点P的切线即切线过点PP不一定是切点.因此在求过点P的切线方程时,应首先检验点P是否在已知曲线上.【典例指引】12013全国新课标卷节选)已知函数f(x)x2axbg(x)ex(cxd),若曲线yf(x)和曲线yg(x)都过点P(02),且在点P处有相同的切线y4x+2)求abcd的值.简析:()由已知得,而===4=2=2=2学科&2设函数1)当时,求函数在区间上的最小值;2)当时,曲线在点处的切线为轴交于点求证:3已知函数在点处的切线方程为求函数的解析式;若对于区间上任意两个自变量的值都有,求实数的最小值;若过点可作曲线的三条切线,求实数的取值范围.[来源:Z&xx&k.Com]因为点不在曲线上,所以可设切点为因为,所以切线的斜率为[来源:__]=学科&因为过点可作曲线的三条切线,所以方程有三个不同的实数解.所以函数有三个不同的零点..令,则02+  +极大值极小值[来源:__Z_X_X_K] ,即,解得学科&【新题展示】1.【2019吉林一调】已知函数时,求函数在点处的切线方程;时,若对任意都有,求实数a的取值范围.【思路引导】 (1)代入原方程可得,可得,可得函数在点处的切线方程;(2),分两种情况讨论,结合函数的单调性及对任意都有,可得a的取值范围.解析时,切线方程为:整理得:此时a的值不存在;时,,此时上递增,在上递减.函数上的最大值是由题意得,解得:综上,a的取值范围是2.【2019北京昌平区期末】已知函f(x)=lnx-a[来源:Z.xx.k.Com]()a=-1,求曲线y=f(x)在点(1,f(1))处的切线方程;()f(x)恒成立,求实数a的取值范围.思路引导1)利用曲线的切线方程公式,求得结果;2)由题,进行变形为f(x)恒成立,即f(x)恒成立,构造新函数,用参变分离求函数单调性求其最值,求得a的范围.解析函数f(x)的定义域为(0,+)a=0时,令,得x=1.x,变化情况如下表:x(0,1)1(1,+) +0-g(x)极大值所以,故满足题意.3.【2019浙江浙南名校联盟期末联考】设,函数.I)证明:当时,对任意实数,直线总是曲线的切线; )若存在实数,使得对任意,都有,求实数的最小值.[来源:Z_xx_k.Com]思路引导I)将代入函数解析式,再对函数求导,由的值,即可证明结论;)若存在实数,使得对任意,都有等价于存在实数,使得对任意,都有,且对任意,都有,再由,得,进而可求出结果.【解析】易得的导数. I)证明:此时.注意到对任意实数  故直线是曲线在原点处的切线; 4.【2019河南省期末】已知函数.1)若,曲线在点处的切线经过点,求的最小值;2)若只有一个零点,且,求的取值范围.思路引导1)先对函数求导,结合导数的几何意义即可求出结果;2)用分类讨论的思想,分别讨论三种情况,利用导数的方法研究函数的极值,即可求出结果.【解析】1则曲线在点处的切线方程为,得. ;当时,.,即的最小值为.【同步训练】1.设函数若函数处的切线方程为)求实数的值;)求函数上的最大值.【思路引导】)根据导数的几何意义,可知函数处的导数即为切线的斜率,又点(1)为切点,列出方程解出ab的值;()把ab的值代入解析式,对函数求导判断单调性,根据单调区间写出函数的最值. [2)上单调递增,在(2e]上单调递减, 处取得极大值这个极大值也是 的最大值.    学科&[来源:..Z.X.X.K]所以函数上的最大值为2.已知函数,其导函数的两个零点为-301)求曲线在点处的切线方程;2)求函数的单调区间;3)求函数在区间上的最值.【思路引导】对函数求导,由于导函数有两个零点,所以这两个零点值满足,解方程组求出mn;利用导数的几何意义求切线方程,先求 f(1)求出切点,再求得出斜率,利用点斜式写出切线方程,求单调区间只需在定义域下解不等式,求出增区间和减区间;求函数在闭区间上的最值,先研究函数在该区间的单调性、极值,求出区间两端点的函数值,比较后得出最值所以函数在区间上的最大值为,最小值为-1学科&3.设函数的定义域为,若对任意,都有,则称函数函数.已知函数的图象为曲线,直线与曲线相切于1)求的解析式,并求的减区间;2)设,若对任意,函数函数,求实数的最小值.【思路引导】根据导数的几何意义,借助切点和斜率列方程求出,得出函数的解析式,利用导数解求出函数的单调减区间;对任意,函数函数,等价于在上, ,根据函数的在上的单调性,求出的最值,根据条件求出的范围,得出结论.上为减函数,且上为减函数,,得 学科&4.已知函数1)求的单调区间;2)设曲线轴正半轴的交点为,曲线在点处的切线方程为,求证:对于任意的正实数,都有3)若方程为实数)有两个正实数根,求证: 【思路引导】1求出原函数的导函数得到导函数的零点由零点对定义域分段根据导函数在各区间段内的符号得到原函数的单调性;2设出点的坐标利用导数求出切线方程构造辅助函数利用导数得到对于任意实数即对任意实数都有;(3)由2知,求出方程的根,单调递减,得到,同理得到根据不等式性质则可证得3)由(2)知 ,设方程 的根为 ,可得,因为 单调递减,又由(II)知 ,所以 .类似的,设曲线 在原点处的切线为 可得 ,对任意的,有 .设方程 的根为 ,可得 ,因为 单调递增,且 ,因此, 所以学科&5.已知函数处的切线方程为1)若= ,求证:曲线上的任意一点处的切线与直线和直线围成的三角形面积为定值;【思路引导】根据导数的几何意义,为切线的斜率,解出,写出的切线方程求出三角形的面积为定值6.已知函数1)若处取得极大值,求实数的取值范围;2)若,且过点有且只有两条直线与曲线相切,求实数的值.【思路引导】1)根据条件得化简得再根据有极值得中判别式大于零,进而得最后列表分析极大值条件得解得实数的取值范围;(2)切线条数的确定决定于切点个数,所以设切点,转化为关于切点横坐标的方程再利用导数研究函数有两零点,即极值为零解得实数的值.点评:数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)已知函数求极值.求求方程的根列表检验的根的附近两侧的符号下结论.(3)已知极值求参数.若函数在点处取得极值,则,且在该点左、右两侧的导数值符号相反.7.已知函数1)若直线是曲线与曲线的公切线,求【思路引导1)设直线切于点,与切于处的切线方程为处的切线方程为根据这两条直线为同一条直线,可得关于解得的值,从而可得结果;点评:本题主要考查利用导数的几何意义及利用导数研究函数的单调性,属于难题. 应用导数的几何意义求切点处切线的斜率,主要体现在以下几个方面:(1) 已知切点求斜率,即求该点处的导数(2) 己知斜率求切点即解方程(3) 巳知切线过某点 (不是切点) 求切点, 设出切点利用求解.8.已知函数为常数),其图像是曲线1)设函数的导函数为,若存在三个实数,使得同时成立,求实数的取值范围;2)已知点为曲线上的动点,在点处作曲线的切线与曲线交于另一点,在点处作曲线的切线,设切线的斜率分别为,问:是否存在常数,使得?若存在,求出的值;若不存在,请说明理由.【思路引导】1由于存在唯一的实数使得同时成立,则存在唯一的实数根存在唯一的实数根,就把问题转化为求函数最值问题;2假设存在常数依据曲线在点处的切线与曲线交于另一点,曲线在点处的切线得到关于的方程,有解则存在,无解则不存在 ,解得.故当时,存在常数,使得;当时,不存在常数使得9.已知函数1)若曲线在公共点处有相同的切线,求实数的值;2)当时,若曲线在公共点处有相同的切线,求证:点唯一;3)若,且曲线总存在公切线,求:正实数的最小值.【思路引导】1曲线在公共点处有相同的切线, 解出即可;(2)设由题设得转化为关于的方程只有一解,进而构造函数转化为函数只有一个零点,利用导数即可证明;(3)设曲线在点处的切线方程为,则只需使该切线与相切即可,也即方程组,只有一解即可,所以消去问题转化关于方程总有解,分情况借助导数进行讨论即可求得[来源:++Z+X+X+K] [来源:学科网],则,而,显然不成立,所以 从而,方程可化为,则 时,;当时,,即 上单调递减,在上单调递增.的最小值为,所以,要使方程有解,只须,即点评:本题主要考查导数的几何意义、利用导数研究函数的单调性,属于难题. 应用导数的几何意义求切点处切线的斜率,主要体现在以下几个方面:(1) 已知切点求斜率,即求该点处的导数(2) 己知斜率求切点即解方程(3) 巳知切线过某点 (不是切点) 求切点, 设出切点利用求解. 

    相关试卷

    高考数学压轴难题归纳总结培优专题2.1 导数起源于切线曲切联系需熟练 (含解析):

    这是一份高考数学压轴难题归纳总结培优专题2.1 导数起源于切线曲切联系需熟练 (含解析),共19页。

    备战2022年高考数学压轴题专题2.1 导数起源于切线曲切联系需熟练:

    这是一份备战2022年高考数学压轴题专题2.1 导数起源于切线曲切联系需熟练,共19页。

    专题2.14 等或不等解存在,转化值域可实现-2020届高考数学压轴题讲义(解答题)(解析版):

    这是一份专题2.14 等或不等解存在,转化值域可实现-2020届高考数学压轴题讲义(解答题)(解析版),共28页。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map