冲刺系列卷04-决胜2021年全国高考数学备考优生50天冲刺系列(江苏等八省市新高考地区专用)(原卷 解析)
展开注意事项:
1.答卷前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.
3.考试结束后,将本试卷和答题卡一并交回.
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设集合,,则( )
A. B. C. D.
2.已知i为虚数单位,复数满足z(2+i)=3+4i,记为z的共轭复数,||=( )
A.EQ \F(\R(,29),3) B.EQ \F(5\R(,5),3) C.EQ \F(\R(,29),5) D.eq \r(,5)
3.《周髀算经》中给出了:冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二节气的日影长依次成等差数列的结论.已知某地立春与立夏两个节气的日影长分别为10.5尺和4.5尺,现在从该地日影长小于9尺的节气中随机抽取2个节气进行日影长情况统计,则所选取这2个节气中至少有1个节气的日影长小于5尺的概率为( )
A.eq \f(3,7) B.eq \f(4,7) C.eq \f(13,21) D.eq \f(5,7)
4.已知sinx﹣csx=,则sin(2x+)=( )
A.B.C.D.
5.已知,,且,则向量在向量方向上的投影的最大值为( )
A. 4B. 2C. 1D.
6.函数的图象大致是( )
A. B.
C. D.
7.古希腊数学家欧几里得在《几何原本》中描述了圆锥曲线的共性,并给出了圆锥曲线的统一定义,只可惜对这一定义欧几里得没有给出证明.经过了500年,到了3世纪,希腊数学家帕普斯在他的著作《数学汇篇》中,完善了欧几里得关于圆锥曲线的统一定义,并对这一定义进行了证明.他指出,到定点的距离与到定直线的距离的比是常数e的点的轨迹叫做圆锥曲线;当0<e<1时,轨迹为椭圆;当e=1时,轨迹为抛物线;当e>1时,轨迹为双曲线.现有方程m(x2+y2+2y+1)=(x﹣2y+3)2表示的曲线是双曲线,则m的取值范围为( )
A.(0,1)B.(1,+∞) C.(0,5) D.(5,+∞)
8.已知在上恰有两个极值点,,且,则的取值范围为( )
A. B. C. D.
二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.
9.为了了解市民对各种垃圾进行分类的情况,加强垃圾分类宣传的针对性,指导市民尽快掌握垃圾分类的方法,某市垃圾处理厂连续8周对有害垃圾错误分类情况进行了调查.经整理绘制了如图所示的有害垃圾错误分类重量累积统计图,图中横轴表示时间(单位:周),纵轴表示有害垃圾错误分类的累积重量(单位:吨).根据统计图分析,下列结论正确的是( )
A.当时有害垃圾错误分类的重量加速增长
B.当时有害垃圾错误分类的重量匀速增长
C.当时有害垃圾错误分类的重量相对于当时增长了30%
D.当时有害垃圾错误分类的重量相对于当时减少了0.6吨
10.传说古希腊数学家阿基米德的墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等.这是因为阿基米德认为这个“圆柱容球”是他最为得意的发现,于是留下遗言:他死后,墓碑上要刻上一个“圆柱容球”的几何图形.设圆柱的体积与球的体积之比为m,圆柱的表面积与球的表面积之比为n,若f(x)=(x3)8,则( )
A.f(x)的展开式中的常数项是56
B.f(x)的展开式中的各项系数之和为0
C.f(x)的展开式中的二项式系数最大值是70
D.f(i)=﹣16,其中i为虚数单位
11.已知数列满足,,,,则( )
A. 为等差数列
B. 为常数列
C.
D. 若数列满足,则数列的前100项和为100
12.已知球的半径为2,球心在大小为60°的二面角内,二面角的两个半平面分别截球面得两个圆,,若两圆的公共弦的长为2,为的中点,四面体的体积为,则下列结论中正确的有( )
A. 四点共面B.
C. D. 的最大值为
三、填空题:本题共4小题,每小题5分,共20分.
13.写出一个最大值为4,最小值为﹣2的周期函数f(x)= .
14.某市抽调5位医生分赴4所医院支援抗疫,要求每位医生只能去一所医院,每所医院至少安排一位医生.由于工作需要,甲、乙两位医生必须安排在不同的医院,则不同的安排种数是___________
15.在矩形ABCD内有E、F两点,其中AB=120cm,AE=100cm,EF=80cm,FC=60cm,∠AEF=∠CFE=60°,则该矩形ABCD的面积为 cm2.(答案如有根号可保留)
16.在△ABC中,a,b,c分别为角A,B,C的对边,已知a=eq 2,b\s\up6(2)+c\s\up6(2)-bc=4.若以AB,AC为边向△ABC外分别作正△MAB,正△NAC,记△MAB,△NAC的中心分别为P,Q,则EQ \\ac(\S\UP7(→),BP)EQ \\ac(\S\UP7(→),CQ)的最大值为___▲___.
四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.
17.在① ② ③这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求出的最大值;若问题中的三角形不存在,请说明理由(若选择多个,则按第一个条件评分)
问题:已知的内角,,的对边分别为,,,若,________,求的最大值
18.已知数列前项和为,且
(1)求数列的通项公式;
(2)若为数列的前项和,且存在,使得成立,求实数的取值范围.
19.在四棱锥中,平面,,.
(1)求证:平面平面;
(2)若直线与平面所成角的正弦值为,求平面与平面所成锐二面角的余弦值.
20.新型冠状病毒肺炎是一种急性感染性肺炎,其病原体是一种先前未在人类中发现的新型冠状病毒,即2019新型冠状病毒.2020年2月7日,国家卫健委决定将“新型冠状病毒感染的肺炎”暂命名为“新型冠状病毒肺炎”,简称“新冠肺炎”.患者初始症状多为发热、乏力和干咳,并逐渐出现呼吸困难等严重表现.基于目前流行病学调查,潜伏期为1~14天,潜伏期具有传染性,无症状感染者也可能成为传染源.某市为了增强民众防控病毒的意识,举行了“预防新冠病毒知识竞赛”网上答题,随机抽取人,答题成绩统计如图所示.
(1)由直方图可认为答题者的成绩服从正态分布,其中分别为答题者的平均成绩和成绩的方差,那么这名答题者成绩超过分的人数估计有多少人?(同一组中的数据用该组的区间中点值作代表)
(2)如果成绩超过分的民众我们认为是“防御知识合格者”,用这名答题者的成绩来估计全市的民众,现从全市中随机抽取人,“防御知识合格者”的人数为,求.(精确到)
附:①,;②,则,;③,.
21.已知椭圆的离心率为,且经过点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设椭圆的上、下顶点分别为, 点是椭圆上异于的任意一点, 轴, 为垂足, 为线段中点,直线交直线于点, 为线段的中点,若四边形的面积为2,求直线的方程.
22.已知函数f(x)=2ex+aln(x+1)-2.
(1)当a=-2时,讨论f(x)的单调性;
(2)当x∈[0,π]时,f(x)≥sinx恒成立,求a的取值范围.
冲刺模拟卷05-决胜2021届高三高考数学备考优生50天冲刺系列(江苏等八省市新高考地区专用)(原卷 解析): 这是一份冲刺模拟卷05-决胜2021届高三高考数学备考优生50天冲刺系列(江苏等八省市新高考地区专用)(原卷 解析),文件包含冲刺系列卷05-决胜2021年全国高考数学备考优生50天冲刺系列江苏等八省市新高考地区专用原卷版doc、冲刺系列卷05-决胜2021年全国高考数学备考优生50天冲刺系列江苏等八省市新高考地区专用解析版doc等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
冲刺系列卷01-决胜2021年全国高考数学备考优生50天冲刺系列(江苏等八省市新高考地区专用)(原卷 解析): 这是一份冲刺系列卷01-决胜2021年全国高考数学备考优生50天冲刺系列(江苏等八省市新高考地区专用)(原卷 解析),文件包含冲刺系列卷01-决胜2021年全国高考数学备考优生50天冲刺系列江苏等八省市新高考地区专用原卷版doc、冲刺系列卷01-决胜2021年全国高考数学备考优生50天冲刺系列江苏等八省市新高考地区专用解析版doc等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。
冲刺系列卷02-决胜2021年全国高考数学备考优生50天冲刺系列(江苏等八省市新高考地区专用)(原卷 解析): 这是一份冲刺系列卷02-决胜2021年全国高考数学备考优生50天冲刺系列(江苏等八省市新高考地区专用)(原卷 解析),文件包含冲刺系列卷02-决胜2021年全国高考数学备考优生50天冲刺系列江苏等八省市新高考地区专用原卷版doc、冲刺系列卷02-决胜2021年全国高考数学备考优生50天冲刺系列江苏等八省市新高考地区专用解析版doc等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。