所属成套资源:【讲义】四年级 奥数《举一反三》 共41讲(其中一讲含所有答案)
【讲义】四年级 奥数《举一反三》 第35讲 容斥原理
展开这是一份【讲义】四年级 奥数《举一反三》 第35讲 容斥原理,共6页。教案主要包含了专题简析,精讲精练,四两个年级参展的画共有8幅等内容,欢迎下载使用。
第35讲 容斥原理
一、专题简析:
容斥问题涉及到一个重要原理——包含与排除原理,也叫容斥原理。即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。
容斥原理:对n个事物,如果采用不同的分类标准,按性质a分类与性质b分类(如图),那么具有性质a或性质b的事物的个数=Na+Nb-Nab。
二、精讲精练:
例1:一个班有48人,班主任在班会上问:“谁做完语文作业?请举手!”有37人举手。又问:“谁做完数学作业?请举手!”有42人举手。最后问:“谁语文、数学作业都没有做完?”没有人举手。求这个班语文、数学作业都完成的人数。
练 习 一
1、五年级有122名学生参加语文、数学考试,每人至少有一门功课取得优秀成绩。其中语文成绩优秀的有65人,数学优秀的有87人。语文、数学都优秀的有多少人?
2、四年级一班有54人,订阅《小学生优秀作文》和《数学大世界》两种读物的有13人,订《小学生优秀作文》的有45人,每人至少订一种读物,订《数学大世界》的有多少人?
例2:某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人。问多少个同学两题都答得不对?
练 习 二
1、五(1)班有40个学生,其中25人参加数学小组,23人参加科技小组,有19人两个小组都参加了。那么,有多少人两个小组都没有参加?
2、一个班有55名学生,订阅《小学生数学报》的有32人,订阅《中国少年报》的有29人,两种报纸都订阅的有25人。两种报纸都没有订阅的有多少人?
例3:某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,那么同时参加语文、数学两科竞赛的有多少人?
练 习 三
1、一个旅行社有36人,其中会英语的有24人,会法语的有18人,两样都不会的有4人。两样都会的有多少人?
2、一个俱乐部有103人,其中会下中国象棋的有69人,会下国际象棋的有52人,这两种棋都不会下的有12人。问这两种棋都会下的有多少人?
例4:在1到100的自然数中,既不是5的倍数也不是6的倍数的数有多少个?
练 习 四
1、在1到200的全部自然数中,既不是5的倍数又不是8的倍数的数有多少个?
2、在1到130的全部自然数中,既不是6的倍数又不是5的倍数的数有多少个?
例5:光明小学举办学生书法展览。学校的橱窗里展出了每个年级学生的书法作品,其中有24幅不是五年级的,有22幅不是六年级的,五、六年级参展的书法作品共有10幅,其他年级参展的书法作品共有多少幅?
练 习 五
1、科技节那天,学校的科技室里展出了每个年级学生的科技作品,其中有110件不是一年级的,有100件不是二年级的,一、二年级参展的作品共有32件。其他年级参展的作品共有多少件?
2、六(1)儿童节那天,学校的画廊里展出了每个年级学生的图画作品,其中有25幅画不是三年级的,有19幅画不是四年级的,三、四两个年级参展的画共有8幅。其他年级参展的画共有多少幅?
三、课后作业
1、学校文艺组每人至少会演奏一种乐器,已知会拉手风琴的有24人,会弹电子琴的有17人,其中两种乐器都会演奏的有8人。这个文艺组一共有多少人?
2、某校选出50名学生参加区作文比赛和数学比赛,结果3人两项比赛都获奖了,有27人两项比赛都没有获奖。已知作文比赛获奖的有14人,问数学比赛获奖的有多少人?
3、三年级一班参加合唱队的有40人,参加舞蹈队的有20人,既参加合唱队又参加舞蹈队的有14人。这两队都没有参加的有10人。请算一算,这个班共有多少人?
4、五(1)班做广播操,全班排成4行,每行的人数相等。小华排的位置是:从前面数第5个,从后面数第8个。这个班共有多少个学生?
5、实验小学举办学生书法展,学校的橱窗里展出每个年级学生的书法作品,其中有28幅不是五年级的,有24幅不是六年级的,五、六年级参展的书法作品共有20幅。一、二年级参展的作品总数比三、四年级参展作品的总数少4幅。一、二年级参展的书法作品共有多少幅?
相关教案
这是一份奥数六年级上册寒假课程第2讲《容斥原理》教案,共6页。教案主要包含了教学目标,教学重点,教学难点,教学准备,教学过程等内容,欢迎下载使用。
这是一份升六年级数学奥数讲义-容斥原理(教师版 学生版),文件包含容斥原理学生版docx、容斥原理讲师版pdf等2份教案配套教学资源,其中教案共22页, 欢迎下载使用。
这是一份【讲义】三年级 奥数《举一反三》 第39讲 抽屉原理,共6页。教案主要包含了专题简析,精讲精练,课后作业等内容,欢迎下载使用。