终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    人教版七年级下册第九章实际问题与一元一次不等式(提高)知识讲解(含解析)

    立即下载
    加入资料篮
    人教版七年级下册第九章实际问题与一元一次不等式(提高)知识讲解(含解析)第1页
    人教版七年级下册第九章实际问题与一元一次不等式(提高)知识讲解(含解析)第2页
    人教版七年级下册第九章实际问题与一元一次不等式(提高)知识讲解(含解析)第3页
    还剩3页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学人教版七年级下册9.2 一元一次不等式课后作业题

    展开

    这是一份初中数学人教版七年级下册9.2 一元一次不等式课后作业题,共6页。
    1.会从实际问题中抽象出不等的数量关系,会用一元一次不等式解决实际问题;
    2. 熟悉常见一些应用题中的数量关系.
    【要点梳理】
    要点一、常见的一些等量关系
    1.行程问题:路程=速度×时间
    2.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量
    3.利润问题:商品利润=商品售价-商品进价,
    4.和差倍分问题:增长量=原有量×增长率
    5.银行存贷款问题:本息和=本金+利息,利息=本金×利率
    6.数字问题:多位数的表示方法:例如:.
    要点二、列不等式解决实际问题
    列一元一次不等式解应用题与列一元一次方程解应用题类似,通常也需要经过以下几个步骤:
    (1)审:认真审题,分清已知量、未知量及其关系,找出题中不等关系要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“至少”、“不超过”、“超过”等;
    (2)设:设出适当的未知数;
    (3)列:根据题中的不等关系,列出不等式;
    (4)解:解所列的不等式;
    (5)答:写出答案,并检验是否符合题意.
    要点诠释:
    (1)列不等式的关键在于确定不等关系;
    (2)求得不等关系的解集后,应根据题意,把实际问题的解求出来;
    (3)构建不等关系解应用题的流程如图所示.
    (4)用不等式解决应用问题,有一点要特别注意:在设未知数时,表示不等关系的文字如“至少”不能出现,即应给出肯定的未知数的设法,然后在最后写答案时,应把表示不等关系的文字补上.如下面例1中 “设还需要B型车x辆 ”,而在答中 “至少需要11台B型车 ”.这一点要应十分注意.
    【典型例题】
    类型一、简单应用题
    1.蓝天运输公司要将300吨物资运往某地,现有A、B两种型号的汽车可供调用.已知A型汽车每辆最多可装该物资20吨,B型汽车每辆最多可装该物资15吨.在每辆车不超载的条件下,要把这300吨物资一次性装运完.问:在已确定调用7辆A型车的前提下至少还需调用B型车多少辆?
    【思路点拨】本题的数量关系是:7辆A型汽车装载货物的吨数+B型汽车装货物的吨数≥300吨,由此可得出不等式,求出自变量的取值范围,找出符合条件的值.
    【答案与解析】
    解:设需调用B型车x辆,由题意得:

    解得: ,
    又因为x取整数,所以x最小取11.
    答:在已确定调用7辆A型车的前提下至少还需调用B型车11辆.
    【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的不等量关系.
    举一反三:
    【变式】(2015•香坊区二模)某商场共用2200元同时购进A、B两种型号的背包各40个,且购进A型号背包2个比购进B型号背包1个多用20元.
    (1)求A、B两种型号背包的进货单价各为多少元?
    (2)若该商场把A、B两种型号背包均按每个50元的价格进行零售,同时为了吸引消费者,商场拿出一部分背包按零售价的7折进行让利销售.商场在这批背包全部销售完后,若总获利不低于1350元,求商场用于让利销售的背包数量最多为多少个?
    【答案】
    解:(1)设A型背包每个为x元,B型背包每个为y元,由题意得

    解得:.
    答:A、B两种型号背包的进货单价各为25元、30元;
    (2)设商场用于让利销售的背包数量为a个,
    由题意得,50×70a%+50(40×2﹣a)﹣2200≥1350,
    解得:a≤30.
    所以,商场用于让利销售的背包数数量最多为30个.
    答:商场用于让利销售的背包数数量最多为30个.
    类型二、阅读理解型
    2. 用甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C含量及购买这两种原料的价格如下表:
    现配制这种饮料10kg,要求至少含有4200单位的维生素C,若所需甲种原料的质量为xkg,则x应满足的不等式为( )
    A.600x+100(10-x)≥4200 B.8x+4(100-x)≤4200
    C.600x+100(10-x)≤4200 D.8x+4(100-x)≥4200
    【思路点拨】首先由甲种原料所需的质量和饮料的总质量,表示出乙种原料的质量,再结合表格中的数据,根据“至少含有4200单位的维生素C”这一不等关系列不等式.
    【答案】A
    【解析】
    解:若所需甲种原料的质量为xkg,则需乙种原料(10-x)kg.
    根据题意,得600x+100(10-x)≥4200.
    【总结升华】能够读懂表格,会把文字语言转换为数学语言.
    【变式】(2015春•西城区期末)为了落实水资源管理制度,大力促进水资源节约,某地实行居民用水阶梯水价,收费标准如下表:
    (1)小明家5月份用水量为14立方米,在这个月,小明家需缴纳的水费为 元;
    (2)小明家6月份缴纳水费110元,在这个月,小明家缴纳第二阶梯水价的用水量为 立方米;
    (3)随着夏天的到来,用水量将会有所增加,为了节省开支,小明家计划7月份的水费不超过180元,在这个月,小明家最多能用水多少立方米?
    【答案】解:(1)由表格中数据可得:0≤x≤15时,水价为:5元/立方米,
    故小明家5月份用水量为14立方米,在这个月,小明家需缴纳的水费为:14×5=70(元);
    (2)∵15×5=75<110,75+6×7=117>110,
    ∴小明家6月份使用水量超过15立方米但小于21立方米,
    设小明家6月份使用水量为x立方米,
    ∴75+(x﹣15)×7=110,
    解得:x=20,
    故小明家缴纳第二阶梯水价的用水量为:20﹣15=5(立方米),
    故答案为:5;
    (3)设小明家能用水a立方米,根据题意可得:
    117+(a﹣21)×9≤180,
    解得:a≤28.
    答:小明家计划7月份的水费不超过180元,在这个月,小明家最多能用水28立方米.
    类型三、方案选择型
    3.(2015•龙岩)某公交公司有A,B型两种客车,它们的载客量和租金如下表:
    红星中学根据实际情况,计划租用A,B型客车共5辆,同时送七年级师生到基地校参加社会实践活动,设租用A型客车x辆,根据要求回答下列问题:
    (1)用含x的式子填写下表:
    (2)若要保证租车费用不超过1900元,求x的最大值;
    (3)在(2)的条件下,若七年级师生共有195人,写出所有可能的租车方案,并确定最省钱的租车方案.
    【思路点拨】(1)根据题意,载客量=汽车辆数×单车载客量,租金=汽车辆数×单车租金,列出代数表达式即可;
    (2)根据题意,表示出租车总费用,列出不等式即可解决;
    (3)由(2)得出x的取值范围,一一列举计算,排除不合题意方案即可.
    【答案与解析】
    解:(1)∵载客量=汽车辆数×单车载客量,租金=汽车辆数×单车租金,
    ∴B型客车载客量=30(5﹣x);B型客车租金=280(5﹣x);
    故填:30(5﹣x);280(5﹣x).
    (2)根据题意,400x+280(5﹣x)≤1900,解得:x≤4,
    ∴x的最大值为4;
    (3)由(2)可知,x≤4,故x可能取值为0、1、2、3、4,
    ①A型0辆,B型5辆,租车费用为400×0+280×5=1400元,
    但载客量为45×0+30×5=150<195,故不合题意舍去;
    ②A型1辆,B型4辆,租车费用为400×1+280×4=1520元,
    但载客量为45×1+30×4=165<195,故不合题意舍去;
    ③A型2辆,B型3辆,租车费用为400×2+280×3=1640元,
    但载客量为45×2+30×3=180<195,故不合题意舍去;
    ④A型3辆,B型2辆,租车费用为400×3+280×2=1760元,
    但载客量为45×3+30×2=195=195,符合题意;
    ⑤A型4辆,B型1辆,租车费用为400×4+280×1=1880元,
    但载客量为45×4+30×1=210,符合题意;
    故符合题意的方案有④⑤两种,最省钱的方案是A型3辆,B型2辆.
    【总结升华】此题主要考查了一次不等式的综合应用,由题意得出租用x辆甲种客车与总租金关系是解决问题的关键.
    举一反三:
    【变式】黄冈某地“杜鹃节”期间,某公司70名职工组团前往参观欣赏,旅游景点规定:①门票每人60元,无优惠;②上山游玩可坐景点观光车,观光车有四座和十一座车,四座车每辆60元,十一座车每人10元.公司职工正好坐满每辆车且总费用不超过5000元,问公司租用的四座车和十一座车各多少辆?
    【答案】
    解:设四座车租x辆,则十一座车租辆.
    依题意 70×60+60x+(70-4x)×10≤5000,
    将不等式左边化简后得:20x+4900≤5000,
    不等式两边减去3500得 20x≤100,
    不等式两边除以20得 x≤5,
    又∵是整数,∴,.
    答:公司租用四座车l辆,十一座车6辆.
    4.响应“家电下乡”的惠农政策,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超过132 000元.已知甲、乙、丙三种电冰箱的出厂价格分别为:1200元/台、1600元/台、2000元/台.
    (1)至少购进乙种电冰箱多少台?
    (2)若要求甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?
    【思路点拨】(1)关系式为:甲种电冰箱用款+乙种电冰箱用款+丙种电冰箱用款≤132000,根据此不等关系列不等式即可求解;(2)关系式为:甲种电冰箱的台数≤丙种电冰箱的台数,以及(1)中得到的关系式联合求解.
    【答案与解析】
    解:(1)设购买乙种电冰箱x台,则购买甲种电冰箱2x台,丙种电冰箱(80-3x)台,
    根据题意得1200×2x+1600x+(80-3x)×2000≤132000
    解这个不等式得x≥14
    ∴至少购进乙种电冰箱14台;
    (2)根据题意得2x≤80-3x
    解这个不等式得 x≤16
    由(1)知 x≥14
    ∴14≤x≤16
    又∵x为正整数
    ∴x=14,15,16.
    所以,有三种购买方案
    方案一:甲种电冰箱为28台,乙种电冰箱为14台,丙种电冰箱为38台.
    方案二:甲种电冰箱为30台,乙种电冰箱为15台,丙种电冰箱为35台.
    方案三:甲种电冰箱为32台,乙种电冰箱为16台,丙种电冰箱为32台.
    【总结升华】探求不等关系时,要注意捕捉“大于”、“超过”、“不少于”、“不足”、“至多”等表示不等关系的关键词,通过这些词语,可以直接找到不等关系.甲种原料
    乙种原料
    维生素C含量(单位•千克)
    600
    100
    原料价格(元•千克)
    8
    4
    A
    B
    载客量(人/辆)
    45
    30
    租金(元/辆)
    400
    280
    车辆数(辆)
    载客量
    租金(元)
    A
    x
    45x
    400x
    B
    5﹣x
    __________
    ___________

    相关试卷

    数学人教版3.4 实际问题与一元一次方程课时作业:

    这是一份数学人教版3.4 实际问题与一元一次方程课时作业,共4页。

    北师大版八年级下册4 一元一次不等式课后作业题:

    这是一份北师大版八年级下册4 一元一次不等式课后作业题,共6页。

    人教版七年级下册9.2 一元一次不等式练习:

    这是一份人教版七年级下册9.2 一元一次不等式练习,共4页。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map