专题35 内外心综合问题-2021年中考数学二轮复习经典问题专题训练
展开专题35 内外心综合问题
【规律总结】
1、内心(1)定义:三角形的内心是三角形三条角平分线的交点(或内切圆的圆心)。(2)三角形的内心的性质①三角形的三条角平分线交于一点,该点即为三角形的内心②三角形的内心到三边的距离相等,都等于内切圆半径r ③(r为内切圆半径)
④在Rt△ABC中,∠C=90°,r=(a+b-c)/2.⑤∠BOC = 90 °+∠A/2 ∠BOA = 90°+∠C/2 ∠AOC = 90°+∠B/2
2、外心(1)定义:三角形的外心是三角形三条垂直平分线的交点(或三角形外接圆的圆心) 。(2)三角形的外心的性质①三角形三条边的垂直平分线的交于一点,该点即为三角形外接圆的圆心. ②三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合。③锐角三角形的外心在三角形内;钝角三角形的外心在三角形外;直角三角形的外心与斜边的中点重合④OA=OB=OC=R ⑤∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠CBA ⑥S△ABC=abc/4R
【典例分析】
例1.(2020·浙江省黄岩实验中学九年级期中)如图,扇形AOD中,,,点P为弧AD上任意一点(不与点A和D重合),于Q,点I为的内心,过O,I和D三点的圆的半径为r.则当点P在弧AD上运动时,r的值满足( )
A. B. C. D.
【答案】D
【分析】
连OI,PI,DI,由△OPH的内心为I,可得到∠PIO=180°-∠IPO-∠IOP=180°-(∠HOP+∠OPH)=135°,并且易证△OPI≌△ODI,得到∠DIO=∠PIO=135°,所以点I在以OD为弦,并且所对的圆周角为135°的一段劣弧上;过D、I、O三点作⊙O′,如图,连O′D,O′O,在优弧AO取点P′,连P′D,P′O,可得∠DP′O=180°-135°=45°,得∠DO′O=90°,O′O=.
【详解】
解:如图,连OI,PI,DI,
∵△OPH的内心为I,
∴∠IOP=∠IOD,∠IPO=∠IPH,
∴∠PIO=180°-∠IPO-∠IOP=180°-(∠HOP+∠OPH),
而PH⊥OD,即∠PHO=90°,
∴∠PIO=180°-(∠HOP+∠OPH)=180°-(180°-90°)=135°,
在△OPI和△ODI中,
,
∴△OPI≌△ODI(SAS),
∴∠DIO=∠PIO=135°,
所以点I在以OD为弦,并且所对的圆周角为135°的一段劣弧上;
过D、I、O三点作⊙O′,如图,连O′D,O′O,
在优弧DO取点P′,连P′D,P′O,
∵∠DIO=135°,
∴∠DP′O=180°-135°=45°,
∴∠DO′O=90°,而OD=6,
∴OO′=DO′=,
∴r的值为,
故选D.
【点睛】
本题考查的是三角形的内切圆与内心,根据题意作出辅助线,构造出全等三角形是解答此题的关键.
例2.(2020·山东省昌乐第一中学九年级期中)如图,是的内心,的延长线与的外接圆相交于点,与交于点,连接、、、.下列说法:①,②,③;④点是的外心;正确的有______.(填写正确说法的序号)
【答案】①③④
【分析】
利用三角形内心的性质得到,根据旋转的性质可对①进行判断;利用三角形内心的性质可对②进行判断;利用,和三角形内角和定理得,可对③判断;通过证明,可得,在证明,可对④进行判断.
【详解】
∵是的内心,
∴AD平分,即,
∴绕点A顺时针旋转一定的角度一定能和重合,
∴①正确;
∵是的内心,
∴点I到三角形三边距离相等,
∴②错误;
∵BI平分,CI平分,
∴,,
∵
∴③正确;
∵,,
∴,
∴,
∴,
∵,
∴,
∴,
∴,
∴点B、I、C在以点D为圆心,DB为半径的圆上,即点是的外心,
∴④正确.
故答案为:①③④.
【点睛】
本题考查了三角形的内切圆与内心的性质,以及旋转的性质和三角形外心,熟练掌握三角形内切圆以及内心的性质是解答本题的关键.
例3.(2020·陕西九年级专题练习)问题提出
(1)如图①,在△ABC中,AB=AC=10,BC=12,点O是△ABC的外接圆的圆心,则OB的长为
问题探究
(2)如图②,已知矩形ABCD,AB=4,AD=6,点E为AD的中点,以BC为直径作半圆O,点P为半圆O上一动点,求E、P之间的最大距离;
问题解决
(3)某地有一块如图③所示的果园,果园是由四边形ABCD和弦CB与其所对的劣弧场地组成的,果园主人现要从入口D到上的一点P修建一条笔直的小路DP.已知AD∥BC,∠ADB=45°,BD=120米,BC=160米,过弦BC的中点E作EF⊥BC交于点F,又测得EF=40米.修建小路平均每米需要40元(小路宽度不计),不考虑其他因素,请你根据以上信息,帮助果园主人计算修建这条小路最多要花费多少元?
【答案】(1);(2)E、P之间的最大距离为7;(3)修建这条小路最多要花费元.
【分析】
(1)若AO交BC于K,则AK=8,在Rt△BOK中,设OB=x,可得x2=62+(8﹣x)2,解方程可得OB的长;
(2)延长EO交半圆于点P,可求出此时E、P之间的最大距离为OE+OP的长即可;
(3)先求出所在圆的半径,过点D作DG⊥BC,垂足为G,连接DO并延长交于点P,则DP为入口D到上一点P的最大距离,求出DP长即可求出修建这条小路花费的最多费用.
【详解】
(1)
如图,若AO交BC于K,
∵点O是△ABC的外接圆的圆心,AB=AC,
∴AK⊥BC,BK=,
∴AK=,
在Rt△BOK中,OB2=BK2+OK2,设OB=x,
∴x2=62+(8−x)2,
解得x=,
∴OB=;
故答案为:.
(2)
如图,连接EO,延长EO交半圆于点P,可求出此时E、P之间的距离最大,
∵在是任意取一点异于点P的P′,连接OP′,P′E,
∴EP=EO+OP=EO+OP′>EP′,即EP>EP′,
∵AB=4,AD=6,
∴EO=4,OP=OC=,
∴EP=OE+OP=7,
∴E、P之间的最大距离为7.
(3)
作射线FE交BD于点M,
∵BE=CE,EF⊥BC,是劣弧,
∴所在圆的圆心在射线FE上,
假设圆心为O,半径为r,连接OC,则OC=r,OE=r−40,BE=CE=,
在Rt△OEC中,r2=802+(r−40)2,
解得:r=100,
∴OE=OF−EF=60,
过点D作DG⊥BC,垂足为G,
∵AD∥BC,∠ADB=45°,
∴∠DBC=45°,
在Rt△BDG中,DG=BG=,
在Rt△BEM中,ME=BE=80,
∴ME>OE,
∴点O在△BDC内部,
∴连接DO并延长交于点P,则DP为入口D到上一点P的最大距离,
∵在上任取一点异于点P的点P′,连接OP′,P′D,
∴DP=OD+OP=OD+OP′>DP′,即DP>DP′,
过点O作OH⊥DG,垂足为H,则OH=EG=40,DH=DG−HG=DG−OE=60,
∴,
∴DP=OD+r=,
∴修建这条小路最多要花费40×元.
【点睛】
本题主要考查了圆的性质与矩形性质的综合运用,熟练掌握相关方法是解题关键.
【好题演练】
一、单选题
1.(2020·江苏苏州市·九年级期中)10个大小相同的正六边形按如图所示方式紧密排列在同一平面内,、、、、、均是正六边形的顶点.则点是下列哪个三角形的外心( ).
A. B. C. D.
2.(2020·上饶市广信区第七中学九年级月考)如图,在平面直角坐标系中,O为坐标原点,为,点A的坐标是,,把绕点A按顺时针方向旋转后,得到,则的外接圆圆心坐标是( )
A. B. C. D.
二、填空题
3.(2020·杭州市建兰中学九年级月考)如图,中,,边上有一点P(不与点重合),I为的内心,若的取值范围为,则_______.
4.(2020·福建南平市·九年级期中)如图,AB是⊙O的直径,且AB=4,点C是半圆AB上一动点(不与A,B重合),CD平分∠ACB交⊙O于点D,点 I是△ABC的内心,连接BD.下列结论:
①点D的位置随着动点C位置的变化而变化;
②ID=BD;
③OI的最小值为;
④ACBC=CD.
其中正确的是 _____________ .(把你认为正确结论的序号都填上)
三、解答题
5.(2020·河北石家庄市·石家庄外国语学校九年级一模)如图,在∠DAM内部做Rt△ABC,AB平分∠DAM,∠ACB=90°,AB=10,AC=8,点N为BC的中点,动点E由A点出发,沿AB运动,速度为每秒5个单位,动点F由A点出发,沿AM运动,速度为每秒8个单位,当点E到达点B时,两点同时停止运动,过A、E、F作⊙O.
(1)判断△AEF的形状为 ,并判断AD与⊙O的位置关系为 ;
(2)求t为何值时,EN与⊙O相切,求出此时⊙O的半径,并比较半径与劣弧长度的大小;
(3)直接写出△AEF的内心运动的路径长为 ;(注:当A、E、F重合时,内心就是A点)
(4)直接写出线段EN与⊙O有两个公共点时,t的取值范围为 .
(参考数据:sin37°=,tan37°=,tan74°≈,sin74°≈,cos74°≈)
6.(2020·浙江宁波市·九年级学业考试)如图,AB为⊙O的直径,点C为下方的一动点,连结OC,过点O作OD⊥OC交BC于点D,过点C作AB的垂线,垂足为F,交DO的延长线于点E.
(1)求证:EC=ED.
(2)当OE=OD,AB=4时,求OE的长.
(3)设=x,tanB=y.
①求y关于x的函数表达式;
②若△COD的面积是△BOD的面积的3倍,求y的值.
专题69 综合运用类问题(1)-2021年中考数学二轮复习经典问题专题训练: 这是一份专题69 综合运用类问题(1)-2021年中考数学二轮复习经典问题专题训练,文件包含专题69综合运用类问题1原卷版-2021年中考数学二轮复习经典问题专题训练docx、专题69综合运用类问题1解析版-2021年中考数学二轮复习经典问题专题训练docx等2份试卷配套教学资源,其中试卷共47页, 欢迎下载使用。
专题57 多个函数的综合问题(2)-2021年中考数学二轮复习经典问题专题训练: 这是一份专题57 多个函数的综合问题(2)-2021年中考数学二轮复习经典问题专题训练,文件包含专题57多个函数的综合问题2原卷版-2021年中考数学二轮复习经典问题专题训练docx、专题57多个函数的综合问题2解析版-2021年中考数学二轮复习经典问题专题训练docx等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。
专题58 多个函数的综合问题(3)-2021年中考数学二轮复习经典问题专题训练: 这是一份专题58 多个函数的综合问题(3)-2021年中考数学二轮复习经典问题专题训练,文件包含专题58多个函数的综合问题3原卷版-2021年中考数学二轮复习经典问题专题训练docx、专题58多个函数的综合问题3解析版-2021年中考数学二轮复习经典问题专题训练docx等2份试卷配套教学资源,其中试卷共41页, 欢迎下载使用。