高三数学一轮复习: 选修4-5 第2节 不等式的证明
展开
这是一份高三数学一轮复习: 选修4-5 第2节 不等式的证明,共7页。
第二节 不等式的证明 [考纲传真] 通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法.1.基本不等式定理1:设a,b∈R,则a2+b2≥2ab,当且仅当a=b时,等号成立.定理2:如果a,b为正数,则≥,当且仅当a=b时,等号成立.定理3:如果a,b,c为正数,则≥,当且仅当a=b=c时,等号成立.定理4:(一般形式的算术—几何平均不等式)如果a1,a2,…,an为n个正数,则≥,当且仅当a1=a2=…=an时,等号成立.2.不等式证明的方法(1)比较法是证明不等式最基本的方法,可分为作差比较法和作商比较法两种.名称作差比较法作商比较法理论依据a>b⇔a-b>0a<b⇔a-b<0a=b⇔a-b=0b>0,>1⇒a>b b<0,>1⇒a<b(2)综合法与分析法①综合法:利用某些已经证明过的不等式和不等式的性质,推导出所要证明的不等式,这种方法叫综合法.即“由因导果”的方法.②分析法:从求证的不等式出发,分析使这个不等式成立的充分条件,把证明不等式转化为判定这些充分条件是否具备的问题,如果能够肯定这些充分条件都已经具备,那么就可以判定原不等式成立,这种方法叫作分析法.即“执果索因”的方法.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)比较法最终要判断式子的符号得出结论.( )(2)综合法是从原因推导到结果的思维方法,它是从已知条件出发,经过逐步推理,最后达到待证的结论.( )(3)分析法又叫逆推证法或执果索因法,是从待证结论出发,一步一步地寻求结论成立的必要条件,最后达到题设的已知条件或已被证明的事实.( )(4)使用反证法时,“反设”不能作为推理的条件应用.( )[答案] (1)× (2)√ (3)× (4)×2.(教材改编)若a>b>1,x=a+,y=b+,则x与y的大小关系是( )A.x>y B.x<yC.x≥y D.x≤yA [x-y=a+-=a-b+=.由a>b>1得ab>1,a-b>0,所以>0,即x-y>0,所以x>y.]3.(教材改编)已知a≥b>0,M=2a3-b3,N=2ab2-a2b,则M,N的大小关系为________.M≥N [2a3-b3-(2ab2-a2b)=2a(a2-b2)+b(a2-b2)=(a2-b2)(2a+b)=(a-b)(a+b)(2a+b).因为a≥b>0,所以a-b≥0,a+b>0,2a+b>0,从而(a-b)(a+b)(2a+b)≥0,故2a3-b3≥2ab2-a2b.]4.已知a>0,b>0且ln(a+b)=0,则+的最小值是________.4 [由题意得,a+b=1,a>0,b>0,∴+=(a+b)=2++≥2+2=4,当且仅当a=b=时等号成立.]5.已知x>0,y>0,证明:(1+x+y2)(1+x2+y)≥9xy.[证明] 因为x>0,y>0,所以1+x+y2≥3>0,1+x2+y≥3>0,8分故(1+x+y2)(1+x2+y)≥3·3=9xy.10分比较法证明不等式 已知a>0,b>0,求证:+≥+.[证明] 法一:-(+)=+=+==≥0,∴+≥+.10分法二:由于===-1≥-1=1.8分又a>0,b>0,>0,∴+≥+.10分[规律方法] 1.在法一中,采用局部通分,优化了解题过程;在法二中,利用不等式的性质,把证明a>b转化为证明>1(b>0).2.作差(商)证明不等式,关键是对差(商)式进行合理的变形,特别注意作商证明不等式,不等式的两边应同号.提醒:在使用作商比较法时,要注意说明分母的符号.[变式训练1] (2017·莆田模拟)设a,b是非负实数,求证:a2+b2≥(a+b). 【导学号:01772447】[证明] 因为a2+b2-(a+b)=(a2-a)+(b2-b)=a(-)+b(-)=(-)(a-b)=.6分因为a≥0,b≥0,所以不论a≥b≥0,还是0≤a≤b,都有a-b与同号,所以(a-b)≥0,所以a2+b2≥(a+b).10分综合法证明不等式 设a,b,c均为正数,且a+b+c=1,证明: 【导学号:01772448】(1)ab+bc+ac≤;(2)++≥1.[证明] (1)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,得a2+b2+c2≥ab+bc+ca,由题设得(a+b+c)2=1,即a2+b2+c2+2ab+2bc+2ca=1,所以3(ab+bc+ca)≤1,即ab+bc+ca≤.5分(2)因为+b≥2a,+c≥2b,+a≥2c,故+++(a+b+c)≥2(a+b+c),则++≥a+b+c,所以++≥1.10分[规律方法] 1.综合法证明的实质是由因导果,其证明的逻辑关系是:A⇒B1⇒B2⇒…⇒Bn⇒B(A为已知条件或数学定义、定理、公理,B为要证结论),它的常见书面表达式是“∵,∴”或“⇒”.2.综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系.合理进行转换,恰当选择已知不等式,这是证明的关键.[变式训练2] (2017·石家庄调研)已知函数f(x)=2|x+1|+|x-2|.(1)求f(x)的最小值m;(2)若a,b,c均为正实数,且满足a+b+c=m,求证:++≥3.[解] (1)当x<-1时,f(x)=-2(x+1)-(x-2)=-3x>3;2分当-1≤x<2时,f(x)=2(x+1)-(x-2)=x+4∈[3,6);当x≥2时,f(x)=2(x+1)+(x-2)=3x≥6.综上,f(x)的最小值m=3.5分(2)证明:a,b,c均为正实数,且满足a+b+c=3,因为+++(a+b+c)=++≥2=2(a+b+c).8分(当且仅当a=b=c=1时取“=”)所以++≥a+b+c,即++≥3.10分分析法证明不等式 (2015·全国卷Ⅱ)设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a-b|<|c-d|的充要条件.[证明] (1)∵a,b,c,d为正数,且a+b=c+d,欲证+>+,只需证明(+)2>(+)2,也就是证明a+b+2>c+d+2,只需证明>,即证ab>cd.由于ab>cd,因此+>+.5分(2)①若|a-b|<|c-d|,则(a-b)2<(c-d)2,即(a+b)2-4ab<(c+d)2-4cd.因为a+b=c+d,所以ab>cd.由(1),得+>+.8分②若+>+,则(+)2>(+)2,即a+b+2>c+d+2.因为a+b=c+d,所以ab>cd.于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2.因此|a-b|<|c-d|.综上,+>+是|a-b|<|c-d|的充要条件.10分[规律方法] 1.本题将不等式证明与充要条件的判定渗透命题,考查推理论证能力和转化与化归的思想方法,由于两个不等式两边都是正数,可通过两边平方来证明.2.当要证的不等式较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.3.分析法证明的思路是“执果索因”,其框图表示为:→→→…→[变式训练3] 已知a>b>c,且a+b+c=0,求证:<a.[证明] 要证<a,只需证b2-ac<3a2.∵a+b+c=0,只需证b2+a(a+b)<3a2,只需证2a2-ab-b2>0,4分只需证(a-b)(2a+b)>0,只需证(a-b)(a-c)>0.∵a>b>c,∴a-b>0,a-c>0,∴(a-b)(a-c)>0显然成立,故原不等式成立.10分[思想与方法]1.比较法:作差比较法主要判断差值与0的大小,作商比较法关键在于判定商值与1的大小(一般要求分母大于0).2.分析法:B⇐B1⇐B2⇐…⇐Bn⇐A(结论).(步步寻求不等式成立的充分条件)(已知).3.综合法:A⇒B1⇒B2⇒…⇒Bn⇒B(已知).(逐步推演不等式成立的必要条件)(结论).[易错与防范]1.使用平均值不等式时易忽视等号成立的条件.2.用分析法证明数学问题时,要注意书写格式的规范性,常常用“要证(欲证)…”“即要证…”“就要证…”等分析到一个明显成立的结论,再说明所要证明的数学问题成立.
相关试卷
这是一份2021届高中数学一轮复习北师大版(理)选修4-5第2讲不等式的证明作业,共5页。
这是一份高三数学一轮复习: 选修4-5 第1节 课时分层训练69,共4页。试卷主要包含了已知正实数a,b满足,已知函数f=|3x+2|.等内容,欢迎下载使用。
这是一份高考数学一轮复习 选修4-5 第2节 不等式的证明,共10页。