高考数学一轮复习讲义第8章第5节直线与平面垂直的性质与判定
展开1.直线与平面垂直
(1)定义
如果直线l与平面α内的任意一条直线都垂直,则直线l与平面α垂直.
(2)判定定理与性质定理
2.直线和平面所成的角
(1)定义
平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.若一条直线垂直于平面,它们所成的角是直角,若一条直线和平面平行,或在平面内,它们所成的角是0°的角.
(2)范围:[0,eq \f(π,2)].
3.平面与平面垂直
(1)二面角的有关概念
①二面角:从一条直线出发的两个半平面所组成的图形叫做二面角;
②二面角的平面角:在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的两条射线,这两条射线所构成的角叫做二面角的平面角.
(2)平面和平面垂直的定义
两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.
(3)平面与平面垂直的判定定理与性质定理
【知识拓展】
重要结论:
(1)若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.
(2)若一条直线垂直于一个平面,则它垂直于这个平面内的任何一条直线(证明线线垂直的一个重要方法).
(3)垂直于同一条直线的两个平面平行.
(4)一条直线垂直于两平行平面中的一个,则这一条直线与另一个平面也垂直.
【思考辨析】
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)直线l与平面α内的无数条直线都垂直,则l⊥α.( × )
(2)垂直于同一个平面的两平面平行.( × )
(3)直线a⊥α,b⊥α,则a∥b.( √ )
(4)若α⊥β,a⊥β⇒a∥α.( × )
(5)若直线a⊥平面α,直线b∥α,则直线a与b垂直.( √ )
1.(教材改编)下列命题中不正确的是( )
A.如果平面α⊥平面β,且直线l∥平面α,则直线l⊥平面β
B.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β
C.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β
D.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥γ
答案 A
解析 根据面面垂直的性质,知A不正确,直线l可能平行平面β,也可能在平面β内.
2.设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的( )
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
答案 A
解析 若α⊥β,因为α∩β=m,b⊂β,b⊥m,所以根据两个平面垂直的性质定理可得b⊥α,又a⊂α,所以a⊥b;反过来,当a∥m时,因为b⊥m,且a,m共面,一定有b⊥a,但不能保证b⊥α,所以不能推出α⊥β.
3.(2017·宝鸡质检)对于四面体ABCD,给出下列四个命题:
①若AB=AC,BD=CD,则BC⊥AD;
②若AB=CD,AC=BD,则BC⊥AD;
③若AB⊥AC,BD⊥CD,则BC⊥AD;
④若AB⊥CD,AC⊥BD,则BC⊥AD.
其中为真命题的是( )
A.①② B.②③ C.②④ D.①④
答案 D
解析
①如图,取BC的中点M,连接AM,DM,由AB=AC⇒AM⊥BC,同理DM⊥BC⇒BC⊥平面AMD,而AD⊂平面AMD,故BC⊥AD.④设A在平面BCD内的射影为O,连接BO,CO,DO,由AB⊥CD⇒BO⊥CD,由AC⊥BD⇒CO⊥BD⇒O为△BCD的垂心⇒DO⊥BC⇒AD⊥BC.
4.(2016·济南模拟)如图,四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,G为MC的中点.则下列结论中不正确的是( )
A.MC⊥AN
B.GB∥平面AMN
C.平面CMN⊥平面AMN
D.平面DCM∥平面ABN
答案 C
解析
显然该几何图形为正方体截去两个三棱锥所剩的几何体,把该几何体放置到正方体中(如图),
取AN的中点H,连接HB,MH,GB,则MC∥HB,又HB⊥AN,所以MC⊥AN,所以A正确;由题意易得GB∥MH,又GB⊄平面AMN,
MH⊂平面AMN,所以GB∥平面AMN,所以B正确;因为AB∥CD,DM∥BN,且AB∩BN=B,CD∩DM=D,所以平面DCM∥平面ABN,所以D正确.
5.(教材改编)在三棱锥P-ABC中,点P在平面ABC中的射影为点O.
(1)若PA=PB=PC,则点O是△ABC的________心.
(2)若PA⊥PB,PB⊥PC,PC⊥PA,则点O是△ABC的________心.
答案 (1)外 (2)垂
解析 (1)如图1,连接OA,OB,OC,OP,
在Rt△POA、Rt△POB和Rt△POC中,PA=PC=PB,
所以OA=OB=OC,即O为△ABC的外心.
(2)如图2,延长AO,BO,CO分别交BC,AC,AB于H,D,G.
∵PC⊥PA,PB⊥PC,PA∩PB=P,
∴PC⊥平面PAB,AB⊂平面PAB,∴PC⊥AB,
又AB⊥PO,PO∩PC=P,
∴AB⊥平面PGC,
又CG⊂平面PGC,
∴AB⊥CG,即CG为△ABC边AB的高.
同理可证BD,AH为△ABC底边上的高,
即O为△ABC的垂心.
题型一 直线与平面垂直的判定与性质
例1 (2016·全国甲卷改编)如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=eq \f(5,4),EF交BD于点H.将△DEF沿EF折到△D′EF的位置.OD′=eq \r(10).
证明:D′H⊥平面ABCD.
证明 由已知得AC⊥BD,AD=CD.
又由AE=CF得eq \f(AE,AD)=eq \f(CF,CD),故AC∥EF.
因此EF⊥HD,从而EF⊥D′H.
由AB=5,AC=6得DO=BO=eq \r(AB2-AO2)=4.
由EF∥AC得eq \f(OH,DO)=eq \f(AE,AD)=eq \f(1,4).
所以OH=1,D′H=DH=3.
于是D′H2+OH2=32+12=10=D′O2,故D′H⊥OH.
又D′H⊥EF,而OH∩EF=H,且OH,EF⊂平面ABCD,
所以D′H⊥平面ABCD.
思维升华 证明线面垂直的常用方法及关键
(1)证明直线和平面垂直的常用方法有:①判定定理;②垂直于平面的传递性(a∥b,a⊥α⇒b⊥α);③面面平行的性质(a⊥α,α∥β⇒a⊥β);④面面垂直的性质.
(2)证明线面垂直的关键是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.
(2015·江苏)如图,在直三棱柱ABCA1B1C1中,已知AC⊥BC,BC=CC1.设AB1的中点为D,B1C∩BC1=E.
求证:(1)DE∥平面AA1C1C;
(2)BC1⊥AB1.
证明 (1)由题意知,E为B1C的中点,
又D为AB1的中点,因此DE∥AC.
又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,
所以DE∥平面AA1C1C.
(2)因为棱柱ABCA1B1C1是直三棱柱,
所以CC1⊥平面ABC.
因为AC⊂平面ABC,
所以AC⊥CC1.
又因为AC⊥BC,CC1⊂平面BCC1B1,
BC⊂平面BCC1B1,BC∩CC1=C,
所以AC⊥平面BCC1B1.
又因为BC1⊂平面BCC1B1,
所以BC1⊥AC.
因为BC=CC1,所以矩形BCC1B1是正方形,
因此BC1⊥B1C.
因为AC,B1C⊂平面B1AC,AC∩B1C=C,
所以BC1⊥平面B1AC.
又因为AB1⊂平面B1AC,
所以BC1⊥AB1.
题型二 平面与平面垂直的判定与性质
例2 如图,四棱锥P-ABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F,G,M,N分别为PB,AB,BC,PD,PC的中点.
(1)求证:CE∥平面PAD;
(2)求证:平面EFG⊥平面EMN.
证明 (1)方法一
取PA的中点H,连接EH,DH.
又E为PB的中点,
所以EH綊eq \f(1,2)AB.
又CD綊eq \f(1,2)AB,
所以EH綊CD.
所以四边形DCEH是平行四边形,所以CE∥DH.
又DH⊂平面PAD,CE⊄平面PAD.
所以CE∥平面PAD.
方法二
连接CF.
因为F为AB的中点,
所以AF=eq \f(1,2)AB.
又CD=eq \f(1,2)AB,所以AF=CD.
又AF∥CD,所以四边形AFCD为平行四边形.
因此CF∥AD,又CF⊄平面PAD,AD⊂平面PAD,
所以CF∥平面PAD.
因为E,F分别为PB,AB的中点,所以EF∥PA.
又EF⊄平面PAD,PA⊂平面PAD,
所以EF∥平面PAD.
因为CF∩EF=F,故平面CEF∥平面PAD.
又CE⊂平面CEF,所以CE∥平面PAD.
(2)因为E、F分别为PB、AB的中点,所以EF∥PA.
又因为AB⊥PA,
所以EF⊥AB,同理可证AB⊥FG.
又因为EF∩FG=F,EF⊂平面EFG,FG⊂平面EFG.
所以AB⊥平面EFG.
又因为M,N分别为PD,PC的中点,
所以MN∥CD,又AB∥CD,所以MN∥AB,
所以MN⊥平面EFG.
又因为MN⊂平面EMN,所以平面EFG⊥平面EMN.
引申探究
1.在本例条件下,证明:平面EMN⊥平面PAC.
证明 因为AB⊥PA,AB⊥AC,
且PA∩AC=A,所以AB⊥平面PAC.
又MN∥CD,CD∥AB,所以MN∥AB,
所以MN⊥平面PAC.
又MN⊂平面EMN,
所以平面EMN⊥平面PAC.
2.在本例条件下,证明:平面EFG∥平面PAC.
证明 因为E,F,G分别为PB,AB,BC的中点,
所以EF∥PA,FG∥AC,
又EF⊄平面PAC,PA⊂平面PAC,
所以EF∥平面PAC.
同理,FG∥平面PAC.
又EF∩FG=F,
所以平面EFG∥平面PAC.
思维升华 (1)判定面面垂直的方法
①面面垂直的定义;
②面面垂直的判定定理(a⊥β,a⊂α⇒α⊥β).
(2)在已知平面垂直时,一般要用性质定理进行转化.
在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.
(2016·江苏)如图,在直三棱柱ABCA1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.
求证:(1)直线DE∥平面A1C1F;
(2)平面B1DE⊥平面A1C1F.
证明 (1)由已知,DE为△ABC的中位线,
∴DE∥AC,又由三棱柱的性质可得AC∥A1C1,
∴DE∥A1C1,
又∵DE⊄平面A1C1F,A1C1⊂平面A1C1F,
∴DE∥平面A1C1F.
(2)在直三棱柱ABCA1B1C1中,AA1⊥平面A1B1C1,
∴AA1⊥A1C1,
又∵A1B1⊥A1C1,且A1B1∩AA1=A1,
∴A1C1⊥平面ABB1A1,
∵B1D⊂平面ABB1A1,
∴A1C1⊥B1D,
又∵A1F⊥B1D,且A1F∩A1C1=A1,
∴B1D⊥平面A1C1F,
又∵B1D⊂平面B1DE,
∴平面B1DE⊥平面A1C1F.
题型三 垂直关系中的探索性问题
例3 如图,在三棱台ABC-DEF中,CF⊥平面DEF,AB⊥BC.
(1)设平面ACE∩平面DEF=a,求证:DF∥a;
(2)若EF=CF=2BC,试问在线段BE上是否存在点G,使得平面DFG⊥平面CDE?若存在,请确定G点的位置;若不存在,请说明理由.
(1)证明 在三棱台ABC-DEF中,AC∥DF,AC⊂平面ACE,DF⊄平面ACE,∴DF∥平面ACE.
又∵DF⊂平面DEF,平面ACE∩平面DEF=a,
∴DF∥a.
(2)解 线段BE上存在点G,且BG=eq \f(1,3)BE,使得平面DFG⊥平面CDE.
证明如下:
取CE的中点O,连接FO并延长交BE于点G,
连接GD,GF,
∵CF=EF,∴GF⊥CE.
在三棱台ABC-DEF中,AB⊥BC⇒DE⊥EF.
由CF⊥平面DEF⇒CF⊥DE.
又CF∩EF=F,∴DE⊥平面CBEF,∴DE⊥GF.
eq \b\lc\ \rc\}(\a\vs4\al\c1(GF⊥CE,GF⊥DE,CE∩DE=E))⇒GF⊥平面CDE.
又GF⊂平面DFG,∴平面DFG⊥平面CDE.
此时,如平面图所示,延长CB,FG交于点H,
∵O为CE的中点,EF=CF=2BC,
由平面几何知识易证△HOC≌△FOE,
∴HB=BC=eq \f(1,2)EF.
由△HGB∽△FGE可知eq \f(BG,GE)=eq \f(1,2),即BG=eq \f(1,3)BE.
思维升华 同“平行关系中的探索性问题”的规律方法一样,一般是先探求点的位置,多为线段的中点或某个三等分点,然后给出符合要求的证明.
(2016·北京东城区模拟)如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,M为棱AC的中点.AB=BC,AC=2,AA1=eq \r(2).
(1)求证:B1C∥平面A1BM;
(2)求证:AC1⊥平面A1BM;
(3)在棱BB1上是否存在点N,使得平面AC1N⊥平面AA1C1C?如果存在,求此时eq \f(BN,BB1)的值;如果不存在,请说明理由.
(1)证明 连接AB1与A1B,两线交于点O,连接OM,
在△B1AC中,∵M,O分别为AC,AB1中点,
∴OM∥B1C,
又∵OM⊂平面A1BM,B1C⊄平面A1BM,
∴B1C∥平面A1BM.
(2)证明 ∵侧棱AA1⊥底面ABC,BM⊂平面ABC,
∴AA1⊥BM,
又∵M为棱AC中点,AB=BC,∴BM⊥AC.
∵AA1∩AC=A,∴BM⊥平面ACC1A1,
∴BM⊥AC1.
∵AC=2,∴AM=1.
又∵AA1=eq \r(2),∴在Rt△ACC1和Rt△A1AM中,
tan∠AC1C=tan∠A1MA=eq \r(2).
∴∠AC1C=∠A1MA,
即∠AC1C+∠C1AC=∠A1MA+∠C1AC=90°,
∴A1M⊥AC1.
∵BM∩A1M=M,∴AC1⊥平面A1BM.
(3)解 当点N为BB1中点,即eq \f(BN,BB1)=eq \f(1,2)时,
平面AC1N⊥平面AA1C1C.
证明如下:
设AC1中点为D,连接DM,DN.
∵D,M分别为AC1,AC中点,
∴DM∥CC1,且DM=eq \f(1,2)CC1.
又∵N为BB1中点,∴DM∥BN,且DM=BN,
∴四边形BNDM为平行四边形,
∴BM∥DN,
∵BM⊥平面ACC1A1,∴DN⊥平面ACC1A1.
又∵DN⊂平面AC1N,∴平面AC1N⊥平面AA1C1C.
17.立体几何证明问题中的转化思想
典例 (12分)如图所示,M,N,K分别是正方体ABCD—A1B1C1D1的棱AB,CD,C1D1的中点.
求证:(1)AN∥平面A1MK;
(2)平面A1B1C⊥平面A1MK.
思想方法指导 (1)线面平行、垂直关系的证明问题的指导思想是线线、线面、面面关系的相互转化,交替使用平行、垂直的判定定理和性质定理;
(2)线线关系是线面关系、面面关系的基础.证明过程中要注意利用平面几何中的结论,如证明平行时常用的中位线、平行线分线段成比例;证明垂直时常用的等腰三角形的中线等;
(3)证明过程一定要严谨,使用定理时要对照条件、步骤书写要规范.
规范解答
证明 (1)如图所示,连接NK.
在正方体ABCD—A1B1C1D1中,
∵四边形AA1D1D,DD1C1C都为正方形,
∴AA1∥DD1,AA1=DD1,
C1D1∥CD,C1D1=CD.[2分]
∵N,K分别为CD,C1D1的中点,
∴DN∥D1K,DN=D1K,
∴四边形DD1KN为平行四边形,[3分]
∴KN∥DD1,KN=DD1,∴AA1∥KN,AA1=KN,
∴四边形AA1KN为平行四边形,∴AN∥A1K.[4分]
∵A1K⊂平面A1MK,AN⊄平面A1MK,
∴AN∥平面A1MK.[6分]
(2)如图所示,连接BC1.在正方体ABCD—A1B1C1D1中,AB∥C1D1,AB=C1D1.
∵M,K分别为AB,C1D1的中点,
∴BM∥C1K,BM=C1K,
∴四边形BC1KM为平行四边形,∴MK∥BC1.[8分]
在正方体ABCD—A1B1C1D1中,A1B1⊥平面BB1C1C,
BC1⊂平面BB1C1C,∴A1B1⊥BC1.
∵MK∥BC1,∴A1B1⊥MK.
∵四边形BB1C1C为正方形,∴BC1⊥B1C.[10分]
∴MK⊥B1C.
∵A1B1⊂平面A1B1C,B1C⊂平面A1B1C,A1B1∩B1C=B1,∴MK⊥平面A1B1C.
又∵MK⊂平面A1MK,
∴平面A1B1C⊥平面A1MK.[12分]
1.若平面α⊥平面β,平面α∩平面β=直线l,则( )
A.垂直于平面β的平面一定平行于平面α
B.垂直于直线l的直线一定垂直于平面α
C.垂直于平面β的平面一定平行于直线l
D.垂直于直线l的平面一定与平面α,β都垂直
答案 D
解析 对于A,垂直于平面β的平面与平面α平行或相交,故A错误;
对于B,垂直于直线l的直线与平面α垂直、斜交、平行或在平面α内,故B错误;
对于C,垂直于平面β的平面与直线l平行或相交,故C错误;易知D正确.
2.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( )
A.若α⊥β,m⊂α,n⊂β,则m⊥n
B.若α∥β,m⊂α,n⊂β,,则m∥n
C.若m⊥n,m⊂α,n⊂β,则α⊥β
D.若m⊥α,m∥n,n∥β,则α⊥β
答案 D
解析 A中,m与n可垂直、可异面、可平行;B中,m与n可平行、可异面;C中,若α∥β,仍然满足m⊥n,m⊂α,n⊂β,故C错误;故选D.
3.(2016·包头模拟)如图,三棱柱ABC-A1B1C1中,侧棱AA1垂直底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中点,则下列叙述正确的是( )
A.CC1与B1E是异面直线
B.AC⊥平面ABB1A1
C.AE与B1C1是异面直线,且AE⊥B1C1
D.A1C1∥平面AB1E
答案 C
解析 A不正确,因为CC1与B1E在同一个侧面中,故不是异面直线;B不正确,由题意知,上底面ABC是一个正三角形,故不可能存在AC⊥平面ABB1A1;C正确,因为AE,B1C1为在两个平行平面中且不平行的两条直线,故它们是异面直线;D不正确,因为A1C1所在的平面与平面AB1E相交,且A1C1与交线有公共点,故A1C1∥平面AB1E不正确,故选C.
4.如图,以等腰直角三角形ABC的斜边BC上的高AD为折痕,把△ABD和△ACD折成互相垂直的两个平面后,某学生得出下列四个结论:
①BD⊥AC;
②△BAC是等边三角形;
③三棱锥D-ABC是正三棱锥;
④平面ADC⊥平面ABC.
其中正确的是( )
A.①②④B.①②③
C.②③④D.①③④
答案 B
解析 由题意知,BD⊥平面ADC,故BD⊥AC,①正确;AD为等腰直角三角形斜边BC上的高,平面ABD⊥平面ACD,所以AB=AC=BC,△BAC是等边三角形,②正确;易知DA=DB=DC,又由②知③正确;由①知④错.故选B.
5.如图所示,直线PA垂直于⊙O所在的平面,△ABC内接于⊙O,且AB为⊙O的直径,点M为线段PB的中点.现有结论:①BC⊥PC;②OM∥平面APC;③点B到平面PAC的距离等于线段BC的长.其中正确的是( )
A.①②B.①②③
C.①D.②③
答案 B
解析 对于①,∵PA⊥平面ABC,∴PA⊥BC,
∵AB为⊙O的直径,∴BC⊥AC,∴BC⊥平面PAC,
又PC⊂平面PAC,∴BC⊥PC;
对于②,∵点M为线段PB的中点,∴OM∥PA,
∵PA⊂平面PAC,OM⊄平面PAC,∴OM∥平面PAC;
对于③,由①知BC⊥平面PAC,∴线段BC的长即是点B到平面PAC的距离,故①②③都正确.
6.如图,∠BAC=90°,PC⊥平面ABC,则在△ABC和△PAC的边所在的直线中,与PC垂直的直线有________;与AP垂直的直线有________.
答案 AB、BC、AC AB
解析 ∵PC⊥平面ABC,∴PC垂直于直线AB,BC,AC;∵AB⊥AC,AB⊥PC,AC∩PC=C,∴AB⊥平面PAC,∴与AP垂直的直线是AB.
7.如图,直三棱柱ABC-A1B1C1中,侧棱长为2,AC=BC=1,∠ACB=90°,D是A1B1的中点,F是BB1上的动点,AB1,DF交于点E.要使AB1⊥平面C1DF,则线段B1F的长为________.
答案 eq \f(1,2)
解析 设B1F=x,
因为AB1⊥平面C1DF,DF⊂平面C1DF,
所以AB1⊥DF.
由已知可得A1B1=eq \r(2),
设Rt△AA1B1斜边AB1上的高为h,
则DE=eq \f(1,2)h.
又2×eq \r(2)=heq \r(22+\r(2)2),
所以h=eq \f(2\r(3),3),DE=eq \f(\r(3),3).
在Rt△DB1E中,
B1E=eq \r(\f(\r(2),2)2-\f(\r(3),3)2)=eq \f(\r(6),6).
由面积相等得eq \f(\r(6),6)×eq \r(x2+\f(\r(2),2)2)=eq \f(\r(2),2)x,
得x=eq \f(1,2).
8.如图,PA⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E,F分别是点A在PB,PC上的射影,给出下列结论:
①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.
其中正确结论的序号是________.
答案 ①②③
解析 由题意知PA⊥平面ABC,∴PA⊥BC.
又AC⊥BC,且PA∩AC=A,
∴BC⊥平面PAC,∴BC⊥AF.
∵AF⊥PC,且BC∩PC=C,
∴AF⊥平面PBC,
∴AF⊥PB,又AE⊥PB,AE∩AF=A,
∴PB⊥平面AEF,∴PB⊥EF.
故①②③正确.
9.(2016·保定模拟)如图,在直二面角α-MN-β中,等腰直角三角形ABC的斜边BC⊂α,一直角边AC⊂β,BC与β所成角的正弦值为eq \f(\r(6),4),则AB与β所成的角是________.
答案 eq \f(π,3)
解析 如图所示,作BH⊥MN于点H,连接AH,
则BH⊥β,∠BCH为BC与β所成的角.
∵sin∠BCH=eq \f(\r(6),4)=eq \f(BH,BC),
设BC=1,则BH=eq \f(\r(6),4).
∵△ABC为等腰直角三角形,∴AC=AB=eq \f(\r(2),2),
∴AB与β所成的角为∠BAH.
∴sin∠BAH=eq \f(BH,AB)=eq \f(\f(\r(6),4),\f(\r(2),2))=eq \f(\r(3),2),
∴∠BAH=eq \f(π,3).
10.(2016·全国乙卷)如图,在以A,B,C,D,E,F为顶点的五面体中,平面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角DAFE与二面角CBEF都是60°.
(1)证明:平面ABEF⊥EFDC;
(2)求二面角EBCA的余弦值.
(1)证明 由已知可得AF⊥DF,AF⊥FE,DF∩FE=F,
所以AF⊥平面EFDC,
又AF⊂平面ABEF,
故平面ABEF⊥平面EFDC.
(2)解 过D作DG⊥EF,垂足为G,
由(1)知DG⊥平面ABEF.以G为坐标原点,eq \(GF,\s\up6(→))的方向为x轴正方向,|eq \(GF,\s\up6(→))|为单位长,建立如图所示的空间直角坐标系Gxyz.由(1)知∠DFE为二面角DAFE的平面角,故∠DFE=60°,则|DF|=2,|DG|=eq \r(3),可得A(1,4,0),B(-3,4,0),E(-3,0,0),D(0,0,eq \r(3)).
由已知,AB∥EF,AB⊄平面EFDC,EF⊂平面EFDC,
所以AB∥平面EFDC,
又平面ABCD∩平面EFDC=CD,
故AB∥CD,CD∥EF,
由BE∥AF,可得BE⊥平面EFDC,
所以∠CEF为二面角CBEF的平面角,∠CEF=60°,
从而可得C(-2,0,eq \r(3)).
所以eq \(EC,\s\up6(→))=(1,0,eq \r(3)),eq \(EB,\s\up6(→))=(0,4,0),eq \(AC,\s\up6(→))=(-3,-4,eq \r(3)),eq \(AB,\s\up6(→))=(-4,0,0).
设n=(x,y,z)是平面BCE的法向量,则eq \b\lc\{\rc\ (\a\vs4\al\c1(n·\(EC,\s\up6(→))=0,,n·\(EB,\s\up6(→))=0,))
即eq \b\lc\{\rc\ (\a\vs4\al\c1(x+\r(3)z=0,,4y=0.))所以可取n=(3,0,-eq \r(3)).
设m是平面ABCD的法向量,则eq \b\lc\{\rc\ (\a\vs4\al\c1(m·\(AC,\s\up6(→))=0,,m·\(AB,\s\up6(→))=0.))
同理可取m=(0,eq \r(3),4),则cs〈n,m〉=eq \f(n·m,|n||m|)=-eq \f(2\r(19),19).故二面角EBCA的余弦值为-eq \f(2\r(19),19).
11.如图所示,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF∥AB,AB=2,BC=EF=1,AE=eq \r(6),DE=3,∠BAD=60°,G为BC的中点.
(1)求证:FG∥平面BED;
(2)求证:平面BED⊥平面AED;
(3)求直线EF与平面BED所成角的正弦值.
(1)证明 如图,取BD的中点O,连接OE,OG.
在△BCD中,因为G是BC的中点,
所以OG∥DC且OG=eq \f(1,2)DC=1.
又因为EF∥AB,AB∥DC,
所以EF∥OG且EF=OG,
所以四边形OGFE是平行四边形,所以FG∥OE.
又FG⊄平面BED,OE⊂平面BED,
所以FG∥平面BED.
(2)证明 在△ABD中,AD=1,AB=2,∠BAD=60°,
由余弦定理可得BD=eq \r(3),进而∠ADB=90°,
即BD⊥AD.
又因为平面AED⊥平面ABCD,BD⊂平面ABCD,
平面AED∩平面ABCD=AD,
所以BD⊥平面AED.
又因为BD⊂平面BED,
所以平面BED⊥平面AED.
(3)解 因为EF∥AB,所以直线EF与平面BED所成的角即为直线AB与平面BED所成的角.
过点A作AH⊥DE于点H,连接BH.
又平面BED∩平面AED=ED,
由(2)知AH⊥平面BED,
所以直线AB与平面BED所成的角即为∠ABH.
在△ADE中,AD=1,DE=3,AE=eq \r(6),
由余弦定理得cs∠ADE=eq \f(2,3),所以sin∠ADE=eq \f(\r(5),3),
因此,AH=AD·sin∠ADE=eq \f(\r(5),3).
在Rt△AHB中,sin∠ABH=eq \f(AH,AB)=eq \f(\r(5),6).
所以直线EF与平面BED所成角的正弦值为eq \f(\r(5),6).
12.在直角梯形SBCD中,∠D=∠C=eq \f(π,2),BC=CD=2,SD=4,A为SD的中点,如图(1)所示,将△SAB沿AB折起,使SA⊥AD,点E在SD上,且SE=eq \f(1,3)SD,如图(2)所示.
(1)求证:SA⊥平面ABCD;
(2)求二面角E-AC-D的正切值.
(1)证明 由题意,知SA⊥AB,
又SA⊥AD,AB∩AD=A,
所以SA⊥平面ABCD.
(2)解 在AD上取一点O,使AO=eq \f(1,3)AD,
连接EO,如图所示.
又SE=eq \f(1,3)SD,所以EO∥SA.
所以EO⊥平面ABCD.
过O作OH⊥AC交AC于H,连接EH,则AC⊥平面EOH,
所以AC⊥EH,
所以∠EHO为二面角E-AC-D的平面角.
已知EO=eq \f(2,3)SA=eq \f(4,3).
在Rt△AHO中,∠HAO=45°,OH=AO·sin 45°=eq \f(2,3)×eq \f(\r(2),2)=eq \f(\r(2),3).
tan∠EHO=eq \f(EO,OH)=2eq \r(2),即二面角E-AC-D的正切值为2eq \r(2).
文字语言
图形语言
符号语言
判定定理
一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直
eq \b\lc\ \rc\}(\a\vs4\al\c1(a,b⊂α,a∩b=O,l⊥a,l⊥b))⇒l⊥α
性质定理
垂直于同一个平面的两条直线平行
eq \b\lc\ \rc\}(\a\vs4\al\c1(a⊥α,b⊥α))⇒a∥b
文字语言
图形语言
符号语言
判定定理
一个平面过另一个平面的垂线,则这两个平面垂直
eq \b\lc\ \rc\}(\a\vs4\al\c1(l⊥α,l⊂β))⇒α⊥β
性质定理
两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直
eq \b\lc\ \rc\}(\a\vs4\al\c1(α⊥β,l⊂β,α∩β=a,l⊥a))⇒l⊥α
2024届高考数学一轮复习第6章第4节直线、平面垂直的判定与性质学案: 这是一份2024届高考数学一轮复习第6章第4节直线、平面垂直的判定与性质学案,共22页。学案主要包含了教材概念·结论·性质重现,基本技能·思想·活动经验等内容,欢迎下载使用。
高考数学一轮复习第6章第4节直线、平面垂直的判定与性质学案: 这是一份高考数学一轮复习第6章第4节直线、平面垂直的判定与性质学案,共11页。学案主要包含了教材概念·结论·性质重现,基本技能·思想·活动经验等内容,欢迎下载使用。
高考数学统考一轮复习第8章8.5直线平面垂直的判定和性质学案: 这是一份高考数学统考一轮复习第8章8.5直线平面垂直的判定和性质学案,共12页。学案主要包含了知识重温,小题热身等内容,欢迎下载使用。