还剩5页未读,
继续阅读
高三数学一轮复习: 第7章 第5节 课时分层训练42
展开这是一份高三数学一轮复习: 第7章 第5节 课时分层训练42,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
A组 基础达标
(建议用时:30分钟)
一、选择题
1.(2017·西安六校联考)已知m和n是两条不同的直线,α和β是两个不重合的平面,下面给出的条件中一定能推出m⊥β的是( )
A.α⊥β且m⊂α
B.α⊥β且m∥α
C.m∥n且n⊥β
D.m⊥n且α∥β
C [由线线平行性质的传递性和线面垂直的判定定理,可知C正确.]
2.(2017·天津河西模拟)设l是直线,α,β是两个不同的平面,则下列说法正确的是( )
A.若l∥α,l∥β,则α∥β
B.若l∥α,l⊥β,则α⊥β
C.若α⊥β,l⊥α,则l∥β
D.若α⊥β,l∥α,则l⊥β
B [A中,α∥β或α与β相交,不正确.B中,过直线l作平面γ,设α∩γ=l′,则l′∥l,
由l⊥β,知l′⊥β,从而α⊥β,B正确.
C中,l∥β或l⊂β,C不正确.
对于D中,l与β的位置关系不确定.]
3.如图7510,在正四面体PABC中,D,E,F分别是AB,BC,CA的中点,下面四个结论不成立的是( )
【导学号:01772260】
图7510
A.BC∥平面PDF
B.DF⊥平面PAE
C.平面PDF⊥平面PAE
D.平面PDE⊥平面ABC
D [因为BC∥DF,DF⊂平面PDF,
BC⊄平面PDF,
所以BC∥平面PDF,故选项A正确.
在正四面体中,AE⊥BC,PE⊥BC,DF∥BC,
所以BC⊥平面PAE,则DF⊥平面PAE,从而平面PDF⊥平面PAE.因此选项B,C均正确.]
4.设m,n是两条不同的直线,α,β是两个不同的平面.( )
A.若m⊥n,n∥α,则m⊥α
B.若m∥β,β⊥α,则m⊥α
C.若m⊥β,n⊥β,n⊥α,则m⊥α
D.若m⊥n,n⊥β,β⊥α,则m⊥α
C [A中,由m⊥n,n∥α可得m∥α或m与α相交或m⊥α,错误;
B中,由m∥β,β⊥α可得m∥α或m与α相交或m⊂α,错误;
C中,由m⊥β,n⊥β可得m∥n,又n⊥α,所以m⊥α,正确;
D中,由m⊥n,n⊥β,β⊥α可得m∥α或m与α相交或m⊂α,错误.]
5.如图7511,在三棱锥DABC中,若AB=CB,AD=CD,E是AC的中点,则下列命题中正确的是( )
图7511
A.平面ABC⊥平面ABD
B.平面ABD⊥平面BCD
C.平面ABC⊥平面BDE,且平面ACD⊥平面BDE
D.平面ABC⊥平面ACD,且平面ACD⊥平面BDE
C [因为AB=CB,且E是AC的中点,所以BE⊥AC,同理有DE⊥AC,于是AC⊥平面BDE.因为AC⊂平面ABC,所以平面ABC⊥平面BDE.又AC⊂平面ACD,所以平面ACD⊥平面BDE.]
二、填空题
6.如图7512所示,在四棱锥PABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)
【导学号:01772261】
图7512
DM⊥PC(或BM⊥PC等) [由定理可知,BD⊥PC.
∴当DM⊥PC(或BM⊥PC)时,有PC⊥平面MBD.
又PC⊂平面PCD,∴平面MBD⊥平面PCD.]
7.如图7513,在三棱柱ABCA1B1C1中,各棱长都相等,侧棱垂直于底面,点D是侧面BB1C1C的中心,则AD与平面BB1C1C所成角的大小是________.
【导学号:01772262】
图7513
eq \f(π,3) [取BC的中点E,连接AE,DE,则AE⊥平面BB1C1C.
所以∠ADE为直线AD与平面BB1C1C所成的角.
设三棱柱的所有棱长为a,
在Rt△AED中,
AE=eq \f(\r(3),2)a,DE=eq \f(a,2).
所以tan∠ADE=eq \f(AE,DE)=eq \r(3),则∠ADE=eq \f(π,3).
故AD与平面BB1C1C所成的角为eq \f(π,3).]
8.(2016·全国卷Ⅱ)α,β是两个平面,m,n是两条直线,有下列四个命题:
①如果m⊥n,m⊥α,n∥β,那么α⊥β.
②如果m⊥α,n∥α,那么m⊥n.
③如果α∥β,m⊂α,那么m∥β.
④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.
其中正确的命题有________.(填写所有正确命题的编号)
②③④ [对于①,α,β可以平行,也可以相交但不垂直,故错误.
对于②,由线面平行的性质定理知存在直线l⊂α,n∥l,又m⊥α,所以m⊥l,所以m⊥n,故正确.
对于③,因为α∥β,所以α,β没有公共点.又m⊂α,所以m,β没有公共点,由线面平行的定义可知m∥β,故正确.
对于④,因为m∥n,所以m与α所成的角和n与α所成的角相等.因为α∥β,所以n与α所成的角和n与β所成的角相等,所以m与α所成的角和n与β所成的角相等,故正确.]
三、解答题
9. (2015·北京高考)在三棱锥VABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=eq \r(2),O,M分别为AB,VA的中点.
(1)求证:VB∥平面MOC;
(2)求证:平面MOC⊥平面VAB;
(3)求三棱锥VABC的体积.
图7514
[解] (1)证明:因为O,M分别为AB,VA的中点,
所以OM∥VB.3分
又因为VB⊂/平面MOC,所以VB∥平面MOC.5分
(2)证明:因为AC=BC,O为AB的中点,所以OC⊥AB.
又因为平面VAB⊥平面ABC,且OC⊂平面ABC,
所以OC⊥平面VAB.
所以平面MOC⊥平面VAB.8分
(3)在等腰直角三角形ACB中,AC=BC=eq \r(2),
所以AB=2,OC=1.
所以等边三角形VAB的面积S△VAB=eq \r(3).9分
又因为OC⊥平面VAB,
所以三棱锥CVAB的体积等于eq \f(1,3)OC·S△VAB=eq \f(\r(3),3).
又因为三棱锥VABC的体积与三棱锥CVAB的体积相等,所以三棱锥VABC的体积为eq \f(\r(3),3).12分
10.⊙O的直径AB=4,点C,D为⊙O上两点,且∠CAB=45°,F为eq \x\t(BC)的中点.沿直径AB折起,使两个半圆所在平面互相垂直(如图7515②).
① ②
图7515
(1)求证:OF∥平面ACD;
(2)在AD上是否存在点E,使得平面OCE⊥平面ACD?若存在,试指出点E的位置;若不存在,请说明理由.
[解] (1)证明:由∠CAB=45°,知∠COB=90°,1分
又因为F为eq \x\t(BC)的中点,
所以∠FOB=45°,因此OF∥AC,3分
又AC⊂平面ACD,OF⊄平面ACD,
所以OF∥平面ACD.5分
(2)存在,E为AD中点,
因为OA=OD,所以OE⊥AD.7分
又OC⊥AB且两半圆所在平面互相垂直.
所以OC⊥平面OAD.9分
又AD⊂平面OAD,所以AD⊥OC,
由于OE,OC是平面OCE内的两条相交直线,
所以AD⊥平面OCE.
又AD⊂平面ACD,
所以平面OCE⊥平面ACD.12分
B组 能力提升
(建议用时:15分钟)
1.(2017·贵州贵阳二模)如图7516,在正方形ABCD中,E,F分别是BC,CD的中点,沿AE,AF,EF把正方形折成一个四面体,使B,C,D三点重合,重合后的点记为P,P点在△AEF内的射影为O,则下列说法正确的是( )
图7516
A.O是△AEF的垂心
B.O是△AEF的内心
C.O是△AEF的外心
D.O是△AEF的重心
A [由题意可知PA,PE,PF两两垂直,
所以PA⊥平面PEF,从而PA⊥EF,
而PO⊥平面AEF,则PO⊥EF,因为PO∩PA=P,
所以EF⊥平面PAO,
所以EF⊥AO,同理可知AE⊥FO,AF⊥EO,
所以O为△AEF的垂心.]
2.如图7517,在三棱柱ABCA1B1C1中,侧棱AA1⊥底面ABC,底面是以∠ABC为直角的等腰直角三角形,AC=2a,BB1=3a,D是A1C1的中点,点F在线段AA1上,当AF=________时,CF⊥平面B1DF.
【导学号:01772263】
图7517
a或2a [∵B1D⊥平面A1ACC1,∴CF⊥B1D.
为了使CF⊥平面B1DF,只要使CF⊥DF(或CF⊥B1F).
设AF=x,则CD2=DF2+FC2,
∴x2-3ax+2a2=0,∴x=a或x=2a.]
3.(2016·四川高考)如图7518,在四棱锥PABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,BC=CD=eq \f(1,2)AD.
图7518
(1)在平面PAD内找一点M,使得直线CM∥平面PAB,并说明理由;
(2)证明:平面PAB⊥平面PBD.
[解] (1)取棱AD的中点M(M∈平面PAD),点M即为所求的一个点.
理由如下:连接CM,
因为AD∥BC,BC=eq \f(1,2)AD,
所以BC∥AM,且BC=AM.2分
所以四边形AMCB是平行四边形,
所以CM∥AB.
又AB⊂平面PAB,CM⊄平面PAB,
所以CM∥平面PAB.
(说明:取棱PD的中点N,则所找的点可以是直线MN上任意一点)5分
(2)证明:由已知,PA⊥AB,PA⊥CD,
因为AD∥BC,BC=eq \f(1,2)AD,所以直线AB与CD相交,
所以PA⊥平面ABCD,所以PA⊥BD.8分
因为AD∥BC,BC=eq \f(1,2)AD,M为AD的中点,连接BM,
所以BC∥MD,且BC=MD,
所以四边形BCDM是平行四边形,
所以BM=CD=eq \f(1,2)AD,所以BD⊥AB.
又AB∩AP=A,所以BD⊥平面PAB.
又BD⊂平面PBD,所以平面PAB⊥平面PBD.12分
相关试卷
高三数学一轮复习: 第7章 第5节 课时分层训练42:
这是一份高三数学一轮复习: 第7章 第5节 课时分层训练42,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
高考数学一轮复习 第7章 第5节 课时分层训练42:
这是一份高考数学一轮复习 第7章 第5节 课时分层训练42,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
高考数学一轮复习 第7章 第5节 课时分层训练42:
这是一份高考数学一轮复习 第7章 第5节 课时分层训练42,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。