所属成套资源:人教版数学八年级上册:同步教案
初中数学人教版八年级上册第十四章 整式的乘法与因式分解14.1 整式的乘法14.1.2 幂的乘方教案及反思
展开这是一份初中数学人教版八年级上册第十四章 整式的乘法与因式分解14.1 整式的乘法14.1.2 幂的乘方教案及反思,共2页。教案主要包含了情境导入,合作探究,板书设计等内容,欢迎下载使用。
1.理解幂的乘方的运算性质,进一步体会和巩固幂的意义;通过推理得出幂的乘方的运算性质,并且掌握这个性质.(重点)
2.掌握幂的乘方法则的推导过程并灵活应用.(难点)
一、情境导入
1.填空:
(1)同底数幂相乘________不变,指数________;
(2)a2×a3=________;10m×10n=________;
(3)(-3)7×(-3)6=________;
(4)a·a2·a3=________;
(5)(23)2=2( );(x4)5=x( );(2100)3=2( ).
2.计算(22)3;(24)3;(102)3.
问题:(1)上述几道题目有什么共同特点?
(2)观察计算结果,你能发现什么规律?
(3)你能推导一下(am)n的结果吗?请试一试.
二、合作探究
探究点一:幂的乘方
【类型一】 直接应用幂的乘方法则进行计算
计算:
(1)(a3)4; (2)(xm-1)2;
(3)[(24)3]3; (4)[(m-n)3]4.
解析:直接运用(am)n=amn计算即可.
解:(1)(a3)4=a3×4=a12;
(2)(xm-1)2=x2(m-1)=x2m-2;
(3)[(24)3]3=24×3×3=236;
(4)[(m-n)3]4=(m-n)12.
方法总结:运用幂的乘方法则进行计算时,一定不要将幂的乘方与同底数幂的乘法混淆,在幂的乘方中,底数可以是单项式,也可以是多项式.
【类型二】 含幂的乘方的混合运算
计算:a2(-a)2(-a2)3+a10.
解析:根据幂的乘方和同底数幂的乘法法则运算求解.
解:a2(-a)2(-a2)3+a10=-a2·a2·a6+a10=-a10+a10=0.
方法总结:先算幂的乘方,再算同底数幂的乘法,最后算加减,然后合并同类项.
探究点二:幂的乘方法则的逆运算
【类型一】 运用幂的乘方法则比较数的大小
请看下面的解题过程:
“比较2100与375的大小,解:∵2100=(24)25,375=(33)25,又∵24=16,33=27,16<27,∴2100<375”.请你根据上面的解题过程,比较3100与560的大小,并总结本题的解题方法.
解析:首先理解题意,然后可得3100=(35)20,560=(53)20,再比较35与53的大小,即可求得答案.
解:∵3100=(35)20,560=(53)20,又∵35=243,53=125,243>125,即35>53,∴3100>560.
方法总结:此题考查了幂的乘方的性质的应用.注意理解题意,根据题意得到3100=(35)20,560=(53)20是解此题的关键.
【类型二】 方程与幂的乘方的应用
已知2x+5y-3=0,求4x·32y的值.
解析:由2x+5y-3=0得2x+5y=3,再把4x·32y统一为底数为2的乘方的形式,最后根据同底数幂的乘法法则即可得到结果.
解:∵2x+5y-3=0,∴2x+5y=3,∴4x·32y=22x·25y=22x+5y=23=8.
方法总结:本题考查了幂的乘方的逆用及同底数幂的乘法,整体代入求解也比较关键.
【类型三】 根据幂的乘方的关系,求代数式的值
已知2x=8y+1,9y=3x-9,则代数式eq \f(1,3)x+eq \f(1,2)y的值为________.
解析:由2x=8y+1,9y=3x-9得2x=23(y+1),32y=3x-9,则x=3(y+1),2y=x-9,解得x=21,y=6,故代数式eq \f(1,3)x+eq \f(1,2)y=7+3=10.
方法总结:根据幂的乘方与积的乘方公式转化得到x和y的方程组,求出x、y,再计算代数式.
三、板书设计
幂的乘方
幂的乘方的运算公式:(am)n=amn(m,n为正整数).即幂的乘方,底数不变,指数相乘.
幂的乘方公式的探究方式和前节类似,因此在教学中可以利用该优势展开教学,在探究过程中可以进一步发挥学生的主动性,尽可能地让学生在已有知识的基础上,通过自主探究,获得幂的乘方运算的感性认识,进而理解运算法则.
相关教案
这是一份2020-2021学年14.1.2 幂的乘方教学设计,共3页。教案主要包含了新知探究等内容,欢迎下载使用。
这是一份初中数学人教版八年级上册14.1.2 幂的乘方教学设计及反思,共3页。教案主要包含了温故而知新,探究新知,总结规律等内容,欢迎下载使用。
这是一份初中数学人教版八年级上册14.1.2 幂的乘方教学设计及反思,共4页。教案主要包含了应用公式,课堂小结,课堂小测,挑战平台等内容,欢迎下载使用。