所属成套资源:人教版数学九年级上册:同步教案
初中数学人教版九年级上册22.1.4 二次函数y=ax2+bx+c的图象和性质第1课时教学设计
展开
这是一份初中数学人教版九年级上册22.1.4 二次函数y=ax2+bx+c的图象和性质第1课时教学设计,共2页。教案主要包含了情境导入,合作探究,板书设计等内容,欢迎下载使用。
1.会用描点法画出y=ax2+k的图象.
2.掌握形如y=ax2+k的二次函数图象的性质,并会应用.
3.理解二次函数y=ax2+k与y=ax2之间的联系.
一、情境导入
在边长为15cm的正方形铁片中间剪去一个边长为x(cm)的小正方形铁片,剩下的四方框铁片的面积y(cm2)与x(cm)的函数关系式是什么?它的顶点坐标是什么?
二、合作探究
探究点一:二次函数y=ax2+k的图象与性质
【类型一】y=ax2+k的图象与性质的识别
若二次函数y=ax2+2的图象经过点(-2,10),则下列说法错误的是( )
A.a=2
B.当x<0,y随x的增大而减小
C.顶点坐标为(2,0)
D.图象有最低点
解析:把x=-2,y=10代入y=ax2+2可得10=4a+2,所以a=2,∴y=2x2+2,抛物线开口向上,有最低点,当x<0,y随x的增大而减小,所以A、B、D均正确,而顶点坐标为(0,2),而不是(2,0).故选C.
方法总结:抛物线y=ax2+k(a≠0)的顶点为(0,k),对称轴是y轴.
【类型二】二次函数y=ax2+k增减性判断
(2014·广西河池)已知点(x1,y1),(x2,y2)均在抛物线y=x2-1上,下列说法中正确的是( )
A.若y1=y2,则x1=x2
B.若x1=-x2,则y1=-y2
C.若0<x1<x2,则y1>y2
D.若x1<x2<0,则y1>y2
解析:如图所示,选项A:若y1=y2,则x1=-x2,所以选项A是错误的;选项B:若x1=-x2,则y1=y2,所以选项B是错误的;选项C:若0<x1<x2,在对称轴的右侧,y随x的增大而增大,则y1<y2,所以选项C是错误的;选项D:若x1<x2<0,在对称轴的左侧,y随x的增大而减小,则y1>y2,所以选项D是正确的.
方法总结:讨论二次函数的增减性时,应对自变量分区讨论,通常以对称轴为分界线.
【类型三】识别y=ax2+k的图象与一次函数图象
在同一直角坐标系中,一次函数y=ax+c与二次函数y=ax2+c的图象大致为( )
解析:当a>0时,抛物线开口向上,且直线从左向右逐渐上升,当a<0时,抛物线开口向下,且直线从左向右逐渐下降,由此排除选项A,C,D,故选B.
【类型四】确定y=ax2+k与y=ax2的关系
抛物线y=ax2+c与y=-5x2的形状大小,开口方向都相同,且顶点坐标是(0,3),求抛物线的表达式,它是由抛物线y=-5x2怎样得到的?
解:抛物线y=ax2+c与y=-5x2的形状、大小相同,开口方向也相同,∴a=-5.又∵其顶点坐标为(0,3).∴c=3.∴y=-5x2+3.它是由抛物线y=-5x2向上平移3个单位得到的.
方法总结:抛物线y=ax2+k与y=ax2开口大小,方向都相同,只是顶点不同,二者可相互平移得到.
探究点二:二次函数y=ax2+k的应用
【类型一】y=ax2+k的图象与几何图形的综合应用
如图,在平面直角坐标系中,二次函数y=ax2+c(a<0)的图象过正方形ABOC的三个顶点A、B、C,则ac的值是________.
解析:二次函数y=ax2+c与y轴的交点为(0,c),因此OA=c,根据正方形对角线互相垂直平分且相等,不难求得B(-eq \f(c,2),eq \f(c,2))、C(eq \f(c,2),eq \f(c,2)),因为C(eq \f(c,2),eq \f(c,2))在函数y=ax2+c的图象上,将点C坐标代入关系式即可求出ac的值.
解:∵y=ax2+c与y轴的交点为(0,c),四边形ABOC为正方形,∴C点坐标为(eq \f(c,2),eq \f(c,2)).∵二次函数y=ax2+c经过点C,∴eq \f(c,2)=a(eq \f(c,2))2+c,即ac=-2.
方法总结:在解决此类问题时,应充分利用抛物线及正方形的对称性.
【类型二】二次函数y=ax2+k的实际应用
如图所示,一位篮球运动员投篮,球沿抛物线y=-eq \f(1,5)x2+eq \f(7,2)运行,然后准确落入篮筐内,已知篮筐的中心离地面的距离为3.05m.
(1)球在空中运行的最大高度为多少?
(2)如果该运动员跳起,球出手时离地面的高度为2.25m,要想投入篮筐,则他距离篮筐中心的水平距离是多少?
解:(1)∵y=-eq \f(1,5)x2+eq \f(7,2)的顶点坐标为(0,3.5),∴球在空中运行的最大高度为3.5m.
(2)在y=-eq \f(1,5)x2+eq \f(7,2)中,当y=3.05时,3.05=-eq \f(1,5)x2+eq \f(7,2),解得x=±1.5.∵篮筐在第一象限内,∴篮筐中心的横坐标x=1.5.又当y=2.25时,2.25
=-eq \f(1,5)x2+eq \f(7,2),解得x=±2.5.∵运动员在第二象限内,∴运动员的横坐标x=-2.5.故该运动员距离篮球筐中心的水平距离为1.5-(-2.5)=4(m).
三、板书设计
教学过程中,强调学生自主探索和合作交流,在操作中探究二次函数y=ax2+k的图象与性质,体会抛物线y=ax2与y=ax2+k之间联系与区别.
相关教案
这是一份初中数学人教版九年级上册22.1.3 二次函数y=a(x-h)2+k的图象和性质第1课时教案,共4页。教案主要包含了教学目标,教学重难点,教学过程等内容,欢迎下载使用。
这是一份初中第二十二章 二次函数22.1 二次函数的图象和性质22.1.3 二次函数y=a(x-h)2+k的图象和性质第1课时教案,共2页。
这是一份人教版九年级上册22.1.1 二次函数第1课时教案设计,共2页。教案主要包含了知识与技能,过程与方法,情感、态度与价值观,教学重点,教学难点等内容,欢迎下载使用。