九年级上册第二十二章 二次函数22.1 二次函数的图象和性质22.1.2 二次函数y=ax2的图象和性质第2课时教学设计
展开1.经历圆锥侧面积的探索过程.
2.会求圆锥的侧面积和全面积,并能解决一些简单的实际问题.
一、情境导入
扇子是引风用品,夏令必备之物.中国扇文化有着深厚的文化底蕴,与竹文化、道教文化有着密切关系.历来中国有“制扇王国”之称.观察可以发现扇形是圆的一部分,你会求扇形的面积吗?
二、合作探究
探究点一:圆锥的侧面展开图
【类型一】求圆锥的侧面积
小红要过生日了,为了筹备生日聚会,准备自己动手用纸板制作一个底面半径为9cm,母线长为30cm的圆锥形生日礼帽,则这个圆锥形礼帽的侧面积为( )
A.270πcm2 B.540πcm2
C.135πcm2 D.216πcm2
解析:圆锥的侧面积=π×底面半径×母线长,把相关数值代入计算即可.圆锥形礼帽的侧面积=π×9×30=270π(cm2),故选A.
方法总结:把圆锥侧面问题转化为扇形问题是解决此类问题的一般步骤,体现了空间图形和平面图形的转化思想.同时还应抓住两个对应关系,即圆锥的底面周长对应着扇形的弧长,圆锥的母线长对应着扇形的半径,结合扇形的面积公式或弧长公式即可解决.
【类型二】求圆锥底面的半径
用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径为( )
A.2πcm B.1.5cm C.πcm D.1cm
解析:设底面半径为r,根据底面圆的周长等于扇形的弧长,可得:2πr=eq \f(120×3π,180),∴r=1,故选D.
方法总结:用扇形围成圆锥时,扇形的弧长是底面圆的周长.扇形的弧长公式为l=eq \f(nπr,180).
【类型三】求圆锥的高
小明用图中所示的扇形纸片作一个圆锥的侧面,已知扇形的半径为5cm,弧长是6πcm,那么这个圆锥的高是( )
A.4cm
B.6cm
C.8cm
D.2cm
解析:如图,∵圆锥的底面圆周长=扇形的弧长=6πcm,圆锥的底面圆周长=2π·OB,∴2π·OB=6π解得OB=3.又∵圆锥的母线长AB=扇形的半径=5cm,∴圆锥的高OA=eq \r(AB2-OB2)=4cm.故答案选A.
方法总结:这类题要抓住两个要点:1.圆锥的母线长为扇形的半径;2.圆锥的底面圆周长为扇形的弧长.再结合题意,综合运用勾股定理、方程思想就可解决.
【类型四】圆锥的侧面展开图的圆心角
一个圆锥的侧面积是底面积的2倍,则此圆锥侧面展开图的圆心角是( )
A.120° B.180° C.240° D.300°
解析:设圆锥的母线长为R,底面半径为r,则由侧面积是底面积的2倍可知侧面积为2πr2,则2πr2=πRr,解得R=2r,利用弧长公式可列等式2πr=eq \f(nπ·2r,180),解方程得n=180°.故选B.
方法总结:解决关于圆柱和圆锥的侧面展开图的计算问题时,将立体图形和展开后的平面图形的各个量的对应关系联系起来至关重要.
三、板书设计
教学过程中,强调学生应熟练掌握相关公式并会灵活运用.要充分发挥空间想象力,把立体图形与展开后的平面图形各个量准确对应起来.
初中人教版24.4 弧长和扇形面积第2课时教学设计: 这是一份初中人教版24.4 弧长和扇形面积第2课时教学设计,共4页。教案主要包含了教学重点,教学难点,教学说明等内容,欢迎下载使用。
人教版九年级上册24.1.1 圆第2课时教案及反思: 这是一份人教版九年级上册24.1.1 圆第2课时教案及反思,共2页。
初中数学人教版九年级上册第二十四章 圆24.1 圆的有关性质24.1.1 圆第2课时教案: 这是一份初中数学人教版九年级上册第二十四章 圆24.1 圆的有关性质24.1.1 圆第2课时教案,共2页。教案主要包含了情境导入,合作探究,板书设计等内容,欢迎下载使用。