年终活动
搜索
    上传资料 赚现金
    英语朗读宝
    高考数学一轮复习第七章 7.3第1页
    高考数学一轮复习第七章 7.3第2页
    高考数学一轮复习第七章 7.3第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高考数学一轮复习第七章 7.3

    展开

    这是一份高考数学一轮复习第七章 7.3,共20页。试卷主要包含了线面平行的判定定理和性质定理,面面平行的判定定理和性质定理,下列四个命题中正确的是等内容,欢迎下载使用。
    1.线面平行的判定定理和性质定理
    2.面面平行的判定定理和性质定理
    概念方法微思考
    1.一条直线与一个平面平行,那么它与平面内的所有直线都平行吗?
    提示 不都平行.该平面内的直线有两类,一类与该直线平行,一类与该直线异面.
    2.一个平面内的两条相交直线与另一个平面内的两条相交直线分别对应平行,那么这两个平面平行吗?
    提示 平行.可以转化为“一个平面内的两条相交直线与另一个平面平行”,这就是面面平行的判定定理.
    题组一 思考辨析
    1.判断下列结论是否正确(请在括号中打“√”或“×”)
    (1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.( × )
    (2)平行于同一条直线的两个平面平行.( × )
    (3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.( × )
    (4)若α∥β,直线a∥α,则a∥β.( × )
    题组二 教材改编
    2.平面α∥平面β的一个充分条件是( )
    A.存在一条直线a,a∥α,a∥β
    B.存在一条直线a,a⊂α,a∥β
    C.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥α
    D.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α
    答案 D
    解析 若α∩β=l,a∥l,a⊄α,a⊄β,则a∥α,a∥β,故排除A.若α∩β=l,a⊂α,a∥l,则a∥β,故排除B.若α∩β=l,a⊂α,a∥l,b⊂β,b∥l,则a∥β,b∥α,故排除C.故选D.
    3.如图,在正方体ABCD-A1B1C1D1中,E为DD1的中点,则BD1与平面AEC的位置关系为________.
    答案 平行
    解析 连接BD,设BD∩AC=O,连接EO,
    在△BDD1中,E为DD1的中点,O为BD的中点,
    所以EO为△BDD1的中位线,则BD1∥EO,
    而BD1⊄平面ACE,EO⊂平面ACE,
    所以BD1∥平面ACE.
    题组三 易错自纠
    4.设α,β是两个不同的平面,m,n是平面α内的两条不同直线,l1,l2是平面β内的两条相交直线,则α∥β的一个充分不必要条件是( )
    A.m∥l1且n∥l2 B.m∥β且n∥l2
    C.m∥β且n∥β D.m∥β且l1∥α
    答案 A
    解析 对于A,由m∥l1,m⊂α,l1⊄α,得l1∥α,同理l2∥α,又l1,l2相交,l1,l2⊂β,所以α∥β,反之不成立,所以m∥l1且n∥l2是α∥β的一个充分不必要条件.
    5.若平面α∥平面β,直线a∥平面α,点B∈β,则在平面β内且过B点的所有直线中( )
    A.不一定存在与a平行的直线
    B.只有两条与a平行的直线
    C.存在无数条与a平行的直线
    D.存在唯一一条与a平行的直线
    答案 A
    解析 当直线a在平面β内且过B点时,不存在与a平行的直线,故选A.
    6.设α,β,γ为三个不同的平面,a,b为直线,给出下列条件:
    ①a⊂α,b⊂β,a∥β,b∥α;②α∥γ,β∥γ;
    ③α⊥γ,β⊥γ;④a⊥α,b⊥β,a∥b.
    其中能推出α∥β的条件是______.(填上所有正确的序号)
    答案 ②④
    解析 在条件①或条件③中,α∥β或α与β相交;
    由α∥γ,β∥γ⇒α∥β,条件②满足;
    在④中,a⊥α,a∥b⇒b⊥α,又b⊥β,从而α∥β,④满足.
    直线与平面平行的判定与性质
    命题点1 直线与平面平行的判定
    例1 (2019·四川省名校联盟模拟)如图,四边形ABCD为矩形,ED⊥平面ABCD,AF∥ED.求证:BF∥平面CDE.
    证明 方法一 ∵四边形ABCD为矩形,∴AB∥CD,
    ∵AB⊄平面CDE,CD⊂平面CDE,∴AB∥平面CDE;
    又AF∥ED,∵AF⊄平面CDE,ED⊂平面CDE,
    ∴AF∥平面CDE;
    ∵AF∩AB=A,AB⊂平面ABF,AF⊂平面ABF,
    ∴平面ABF∥平面CDE,
    又BF⊂平面ABF,∴BF∥平面CDE.
    方法二 如图,在ED上取点N,使DN=AF,连接NC,NF,
    ∵AF∥DN,且AF=DN,
    ∴四边形ADNF为平行四边形,
    ∴AD∥FN,且AD=FN,
    又四边形ABCD为矩形,AD∥BC且AD=BC,∴FN∥BC,且FN=BC,
    ∴四边形BCNF为平行四边形,
    ∴BF∥NC,∵BF⊄平面CDE,NC⊂平面CDE,
    ∴BF∥平面CDE.
    命题点2 直线与平面平行的性质
    例2 如图所示,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和PA作平面PAHG交平面BMD于GH.求证:PA∥GH.
    证明 如图所示,连接AC交BD于点O,连接MO,
    因为四边形ABCD是平行四边形,
    所以O是AC的中点,
    又M是PC的中点,所以AP∥OM.
    又MO⊂平面BMD,PA⊄平面BMD,
    所以PA∥平面BMD.
    又因为平面PAHG∩平面BMD=GH,
    且PA⊂平面PAHG,所以PA∥GH.
    思维升华 判断或证明线面平行的常用方法
    (1)利用线面平行的定义(无公共点).
    (2)利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α).
    (3)利用面面平行的性质(α∥β,a⊂α⇒a∥β).
    (4)利用面面平行的性质(α∥β,a⊄β,a∥α⇒a∥β).
    跟踪训练1 在如图所示的几何体中,四边形ABCD是正方形,PA⊥平面ABCD,E,F分别是线段AD,PB的中点,PA=AB=1.
    (1)证明:EF∥平面PDC;
    (2)求点F到平面PDC的距离.
    (1)证明 取PC的中点M,连接DM,MF,
    ∵M,F分别是PC,PB的中点,
    ∴MF∥CB,MF=eq \f(1,2)CB,
    ∵E为DA的中点,四边形ABCD为正方形,
    ∴DE∥CB,DE=eq \f(1,2)CB,
    ∴MF∥DE,MF=DE,∴四边形DEFM为平行四边形,
    ∴EF∥DM,
    ∵EF⊄平面PDC,DM⊂平面PDC,
    ∴EF∥平面PDC.
    (2)解 ∵EF∥平面PDC,∴点F到平面PDC的距离等于点E到平面PDC的距离.
    ∵PA⊥平面ABCD,∴PA⊥DA,
    在Rt△PAD中,PA=AD=1,∴DP=eq \r(2),
    ∵PA⊥平面ABCD,∴PA⊥CD,
    又CD⊥AD且PA∩AD=A,
    ∴CD⊥平面PAD,∴CD⊥PD,
    ∴S△PCD=eq \f(1,2)×eq \r(2)×1=eq \f(\r(2),2),连接EP,EC,
    ∵VE-PDC=VC-PDE,
    设E到平面PCD的距离为h,
    则eq \f(1,3)×h×eq \f(\r(2),2)=eq \f(1,3)×1×eq \f(1,2)×eq \f(1,2)×1,
    ∴h=eq \f(\r(2),4),∴F到平面PDC的距离为eq \f(\r(2),4).
    平面与平面平行的判定与性质
    例3 如图所示,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:
    (1)B,C,H,G四点共面;
    (2)平面EFA1∥平面BCHG.
    证明 (1)∵G,H分别是A1B1,A1C1的中点,
    ∴GH是△A1B1C1的中位线,
    ∴GH∥B1C1.
    又∵B1C1∥BC,∴GH∥BC,
    ∴B,C,H,G四点共面.
    (2)∵E,F分别是AB,AC的中点,
    ∴EF∥BC.
    ∵EF⊄平面BCHG,BC⊂平面BCHG,
    ∴EF∥平面BCHG.
    又G,E分别为A1B1,AB的中点,A1B1∥AB且A1B1=AB,
    ∴A1G∥EB,A1G=EB,
    ∴四边形A1EBG是平行四边形,
    ∴A1E∥GB.
    又∵A1E⊄平面BCHG,GB⊂平面BCHG,
    ∴A1E∥平面BCHG.
    又∵A1E∩EF=E,A1E,EF⊂平面EFA1,
    ∴平面EFA1∥平面BCHG.
    在本例中,若将条件“E,F,G,H分别是AB,AC,A1B1,A1C1的中点”变为“点D,D1分别是AC,A1C1上的点,且平面BC1D∥平面AB1D1”,试求eq \f(AD,DC)的值.
    解 连接A1B,AB1,交于点O,连接OD1.
    由平面BC1D∥平面AB1D1,
    且平面A1BC1∩平面BC1D=BC1,平面A1BC1∩平面AB1D1=D1O,
    所以BC1∥D1O,则eq \f(A1D1,D1C1)=eq \f(A1O,OB)=1.
    同理,AD1∥C1D,
    又AD∥C1D1,
    所以四边形ADC1D1是平行四边形,
    所以AD=D1C1,又AC=A1C1,
    所以eq \f(A1D1,D1C1)=eq \f(DC,AD),所以eq \f(DC,AD)=1,即eq \f(AD,DC)=1.
    思维升华 证明面面平行的方法
    (1)面面平行的定义.
    (2)面面平行的判定定理.
    (3)垂直于同一条直线的两个平面平行.
    (4)两个平面同时平行于第三个平面,那么这两个平面平行.
    (5)利用“线线平行”、“线面平行”、“面面平行”的相互转化.
    跟踪训练2 (2019·南昌模拟)如图,在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,PA=2,AB=1.设M,N分别为PD,AD的中点.
    (1)求证:平面CMN∥平面PAB;
    (2)求三棱锥P-ABM的体积.
    (1)证明 ∵M,N分别为PD,AD的中点,∴MN∥PA,
    又MN⊄平面PAB,PA⊂平面PAB,
    ∴MN∥平面PAB.
    在Rt△ACD中,∠CAD=60°,CN=AN,
    ∴∠ACN=60°.
    又∠BAC=60°,∴CN∥AB.
    ∵CN⊄平面PAB,AB⊂平面PAB,∴CN∥平面PAB.
    又CN∩MN=N,CN,MN⊂平面CMN,
    ∴平面CMN∥平面PAB.
    (2)解 由(1)知,平面CMN∥平面PAB,
    ∴点M到平面PAB的距离等于点C到平面PAB的距离.
    ∵AB=1,∠ABC=90°,∠BAC=60°,∴BC=eq \r(3),
    ∴三棱锥P-ABM的体积V=VM-PAB=VC-PAB=VP-ABC=eq \f(1,3)×eq \f(1,2)×1×eq \r(3)×2=eq \f(\r(3),3).
    平行关系的综合应用
    例4 如图所示,四边形EFGH为空间四边形ABCD的一个截面,若截面为平行四边形.
    (1)求证:AB∥平面EFGH,CD∥平面EFGH;
    (2)若AB=4,CD=6,求四边形EFGH周长的取值范围.
    (1)证明 ∵四边形EFGH为平行四边形,
    ∴EF∥HG.
    ∵HG⊂平面ABD,EF⊄平面ABD,
    ∴EF∥平面ABD.
    又∵EF⊂平面ABC,平面ABD∩平面ABC=AB,
    ∴EF∥AB,又∵AB⊄平面EFGH,EF⊂平面EFGH,
    ∴AB∥平面EFGH.同理可证,CD∥平面EFGH.
    (2)解 设EF=x(0

    相关试卷

    2024年高考数学第一轮复习专题训练第七章 §7.3 空间点、直线、平面之间的位置关系:

    这是一份2024年高考数学第一轮复习专题训练第七章 §7.3 空间点、直线、平面之间的位置关系,共6页。试卷主要包含了等角定理等内容,欢迎下载使用。

    2024高考数学一轮复习讲义(步步高版)第七章 §7.3 空间点、直线、平面之间的位置关系:

    这是一份2024高考数学一轮复习讲义(步步高版)第七章 §7.3 空间点、直线、平面之间的位置关系,共25页。试卷主要包含了等角定理等内容,欢迎下载使用。

    北师大版高考数学一轮复习第七章 §7.3 基本不等式及其应用:

    这是一份北师大版高考数学一轮复习第七章 §7.3 基本不等式及其应用,共16页。试卷主要包含了了解基本不等式的证明过程等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map