所属成套资源:届高三数学一轮基础复习讲义(学生版+教师版)【机构专用】
第一章 1.2命题及其充要条件-2021届高三数学一轮基础复习讲义(学生版+教师版)【机构专用】
展开这是一份第一章 1.2命题及其充要条件-2021届高三数学一轮基础复习讲义(学生版+教师版)【机构专用】,文件包含第一章12命题及其充要条件-学生版docx、第一章12命题及其充要条件-教师版docx等2份学案配套教学资源,其中学案共27页, 欢迎下载使用。
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)“x2+2x-3<0”是命题.( )
(2)命题“若p,则q”的否命题是“若p,则綈q”.( )
(3)若一个命题是真命题,则其逆否命题也是真命题.( )
(4)当q是p的必要条件时,p是q的充分条件.( )
(5)当p是q的充要条件时,也可说成q成立当且仅当p成立.( )
(6)若p是q的充分不必要条件,则綈p是綈q的必要不充分条件.( )
作业检查
无
第2课时
阶段训练
题型一 命题及其关系
例1 有下列四个命题:
①若“xy=1,则x,y互为倒数”的逆命题;
②“面积相等的三角形是全等三角形”的否命题;
③“若m≤1,则x2-2x+m=0有实数解”的逆否命题;
④“若A∩B=B,则A⊆B”的逆否命题.
其中真命题为( )
A.①② B.②③
C.①④ D.①②③
(1)命题“若x>0,则x2>0”的否命题是( )
A.若x>0,则x2≤0
B.若x2>0,则x>0
C.若x≤0,则x2≤0
D.若x2≤0,则x≤0
(2)某食品的广告词为“幸福的人们都拥有”,这句话的等价命题是( )
A.不拥有的人们会幸福
B.幸福的人们不都拥有
C.拥有的人们不幸福
D.不拥有的人们不幸福
题型二 充分必要条件的判定
例2 (1)设a,b是向量,则“|a|=|b|”是“|a+b|=|a-b|”的( )
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件
(2)已知条件p:x>1或x<-3,条件q:5x-6>x2,则綈p是綈q的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
(1)设p:实数x,y满足x>1且y>1,q:实数x,y满足x+y>2,则p是q的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
(2)已知p:x+y≠-2,q:x,y不都是-1,则p是q的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
题型三 充分必要条件的应用
例3 已知P={x|x2-8x-20≤0},非空集合S={x|1-m≤x≤1+m}.若x∈P是x∈S的必要条件,求m的取值范围.
引申探究
1.若本例条件不变,问是否存在实数m,使x∈P是x∈S的充要条件.
2.本例条件不变,若x∈綈P是x∈綈S的必要不充分条件,求实数m的取值范围.
(1)已知命题p:a≤x≤a+1,命题q:x2-4x<0,若p是q的充分不必要条件,则a的取值范围是________________.
(2)已知条件p:2x2-3x+1≤0,条件q:x2-(2a+1)x+a(a+1)≤0.若綈p是綈q的必要不充分条件,则实数a的取值范围是________.
第3课时
阶段重难点梳理
1.四种命题及相互关系
2.四种命题的真假关系
(1)两个命题互为逆否命题,它们有相同的真假性;
(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.
3.充分条件与必要条件
(1)如果p⇒q,则p是q的充分条件,同时q是p的必要条件;
(2)如果p⇒q,但qp,则p是q的充分不必要条件;
(3)如果p⇒q,且q⇒p,则p是q的充要条件;
(4)如果q⇒p,且pq,则p是q的必要不充分条件;
(5)如果pq,且qp,则p是q的既不充分也不必要条件.
重点题型训练
典例 (1)已知x,y∈R,则“(x-1)2+(y-2)2=0”是“(x-1)(y-2)=0”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
(2)已知条件p:x2+2x-3>0;条件q:x>a,且綈q的一个充分不必要条件是綈p,则a的取值范围是( )
A.[1,+∞) B.(-∞,1]
C.[-1,+∞) D.(-∞,-3]
1.下列命题为真命题的是( )
A.若eq \f(1,x)=eq \f(1,y),则x=y B.若x2=1,则x=1
C.若x=y,则eq \r(x)=eq \r(y) D.若x
A.命题“若x>y,则x>|y|”的逆命题
B.命题“若x>1,则x2>1”的否命题
C.命题“若x=1,则x2+x-2=0”的否命题
D.命题“若x2>0,则x>1”的逆否命题
3.设a,b为实数,则“lg2a>lg2b”是“eq \r(a)>eq \r(b)”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
4.在下列三个结论中,正确的是________.(写出所有正确结论的序号)
①若A是B的必要不充分条件,则綈B也是綈A的必要不充分条件;
②“eq \b\lc\{\rc\ (\a\vs4\al\c1(a>0,,Δ=b2-4ac≤0))”是“一元二次不等式ax2+bx+c≥0的解集为R”的充要条件;
③“x≠1”是“x2≠1”的充分不必要条件.
思导总结
【知识拓展】
1.两个命题互为逆否命题,它们具有相同的真假性.
2.若A={x|p(x)},B={x|q(x)},则
(1)若A⊆B,则p是q的充分条件;
(2)若A⊇B,则p是q的必要条件;
(3)若A=B,则p是q的充要条件;
(4)若AB,则p是q的充分不必要条件;
(5)若AB,则p是q的必要不充分条件;
(6)若AB且A⊉B,则p是q的既不充分也不必要条件.
作业布置
1.命题“若一个数是负数,则它的平方是正数”的逆命题是( )
A.“若一个数是负数,则它的平方不是正数”
B.“若一个数的平方是正数,则它是负数”
C.“若一个数不是负数,则它的平方不是正数”
D.“若一个数的平方不是正数,则它不是负数”
2.命题“如果x≥a2+b2,那么x≥2ab”的逆否命题是( )
A.如果x
C.如果x<2ab,那么x
3.已知命题p:“正数a的平方不等于0”,命题q:“若a不是正数,则它的平方等于0”,则q是p的( )
A.逆命题 B.否命题
C.逆否命题 D.否定
4.设a∈R,则“a<1”是“eq \f(1,a)>1”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
5.已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
6.已知集合A={x∈R|eq \f(1,2)<2x<8},B={x∈R|-1
C.{m|m>2} D.{m|-2
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
8.设U为全集,A,B是集合,则“存在集合C使得A⊆C,B⊆∁UC”是“A∩B=∅”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
9.函数f(x)=eq \b\lc\{\rc\ (\a\vs4\al\c1(lg2x,x>0,,-2x+a,x≤0))有且只有一个零点的充分不必要条件是( )
A.a<0 B.0C.eq \f(1,2)1
*10设函数f(x)=asin(x+α)+bsin(x+β)+csin(x+γ),则“p:f(eq \f(π,2))=0”是“q:f(x)为偶函数”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
11.有三个命题:
①“若x+y=0,则x,y互为相反数”的逆命题;
②“若a>b,则a2>b2”的逆否命题;
③“若x≤-3,则x2+x-6>0”的否命题.
其中真命题的序号为____________.
12.已知f(x)是定义在R上的偶函数,且以2为周期,则“f(x)为[0,1]上的增函数”是“f(x)为[3,4]上的减函数”的________条件.(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”)
13.若x
14.若“数列an=n2-2λn(n∈N*)是递增数列”为假命题,则λ的取值范围是________________.
*15.下列四个结论中:
①“λ=0”是“λa=0”的充分不必要条件;
②在△ABC中,“AB2+AC2=BC2”是“△ABC为直角三角形”的充要条件;
③若a,b∈R,则“a2+b2≠0”是“a,b全不为零”的充要条件;
④若a,b∈R,则“a2+b2≠0”是“a,b不全为零”的充要条件.
正确的是________.(填序号)
*16.已知集合A={y|y=x2-eq \f(3,2)x+1,x∈[eq \f(3,4),2]},B={x|x+m2≥1},若“x∈A”是“x∈B”的充分条件,求实数m的取值范围.
相关学案
这是一份第二章 2.1函数及其表示-2021届高三数学一轮基础复习讲义(学生版+教师版)【机构专用】,文件包含第二章21函数及其表示-学生版docx、第二章21函数及其表示-教师版docx等2份学案配套教学资源,其中学案共29页, 欢迎下载使用。
这是一份第九章 9.5椭圆-2021届高三数学一轮基础复习讲义(学生版+教师版)【机构专用】,文件包含第九章95椭圆-学生版docx、第九章95椭圆-教师版docx等2份学案配套教学资源,其中学案共40页, 欢迎下载使用。
这是一份第五章 5.5复数-2021届高三数学一轮基础复习讲义(学生版+教师版)【机构专用】,文件包含第五章55复数-学生版docx、第五章55复数-教师版docx等2份学案配套教学资源,其中学案共27页, 欢迎下载使用。