|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022高考数学一轮复习 第二章 §2.1 第1课时 函数的概念及其表示 试卷
    立即下载
    加入资料篮
    2022高考数学一轮复习  第二章 §2.1 第1课时 函数的概念及其表示 试卷01
    2022高考数学一轮复习  第二章 §2.1 第1课时 函数的概念及其表示 试卷02
    2022高考数学一轮复习  第二章 §2.1 第1课时 函数的概念及其表示 试卷03
    还剩11页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022高考数学一轮复习 第二章 §2.1 第1课时 函数的概念及其表示

    展开
    这是一份2022高考数学一轮复习 第二章 §2.1 第1课时 函数的概念及其表示,共14页。试卷主要包含了1 函数的概念及其表示,4,,\f+60m+n=18等内容,欢迎下载使用。

    考试要求 1.了解构成函数的要素,会求简单函数的定义域和值域.2.在实际情景中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用.
    1.函数的概念
    一般地,设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.
    2.函数的定义域、值域
    (1)在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.
    (2)如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数相等.
    3.函数的表示法
    表示函数的常用方法有解析法、图象法和列表法.
    4.分段函数
    (1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.
    (2)分段函数虽由几个部分组成,但它表示的是一个函数.分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数的值域的并集.
    微思考
    1.直线x=a(a是常数)与函数y=f(x)的图象有多少个交点?
    提示 0个或1个.
    2.函数定义中,非空数集A,B与函数的定义域、值域有什么关系?
    提示 函数的定义域即为集合A,值域为集合B的子集.
    题组一 思考辨析
    1.判断下列结论是否正确(请在括号中打“√”或“×”)
    (1)若A=R,B={x|x>0},f:x→y=|x|,其对应是从A到B的函数.( × )
    (2)若两个函数的定义域与值域相同,则这两个函数相等.( × )
    (3)y=eq \r(x-3)+eq \r(2-x)是一个函数.( × )
    (4)函数y=f(x)的图象可以是一条封闭的曲线.( × )
    题组二 教材改编
    2.函数f(x)=eq \r(2x-1)+eq \f(1,x-2)的定义域为________.
    答案 [0,2)∪(2,+∞)
    解析 依题意eq \b\lc\{\rc\ (\a\vs4\al\c1(2x-1≥0,,x-2≠0))
    解得x≥0且x≠2,
    ∴原函数的定义域为[0,2)∪(2,+∞).
    3.已知函数f(x)=eq \b\lc\{\rc\ (\a\vs4\al\c1(2x,x≤1,,fx-1,x>1,))则f(2)=________.
    答案 2
    解析 f(2)=f(1)=21=2.
    4.函数f(x)=x-eq \f(1,x)在区间[2,4]上的值域为________.
    答案 eq \b\lc\[\rc\](\a\vs4\al\c1(\f(3,2),\f(15,4)))
    解析 f(x)=x-eq \f(1,x)在区间[2,4]上单调递增,
    又f(2)=eq \f(3,2),
    f(4)=eq \f(15,4),
    故f(x)的值域为eq \b\lc\[\rc\](\a\vs4\al\c1(\f(3,2),\f(15,4))).
    题组三 易错自纠
    5.下列图形中可以表示以M={x|0≤x≤1}为定义域,N={y|0≤y≤1}为值域的函数的图象是( )
    答案 C
    解析 A选项中的值域不满足,B选项中的定义域不满足,D选项不是函数的图象,由函数的定义可知选项C正确.
    6.已知f(eq \r(x))=x+eq \r(x)-1,则f(x)=________.
    答案 x2+x-1,x≥0
    解析 令t=eq \r(x),则t≥0,x=t2,
    ∴f(t)=t2+t-1(t≥0),
    ∴f(x)=x2+x-1,x≥0.
    第1课时 函数的概念及其表示
    题型一 函数的概念
    1.下列各曲线表示的y与x之间的关系中,y不是x的函数的是( )
    答案 C
    2.(多选)下列各组函数相等的是( )
    A.f(x)=x2-2x-1,g(s)=s2-2s-1
    B.f(x)=x-1,g(x)=eq \f(x2-1,x+1)
    C.f(x)=eq \r(x2),g(x)=eq \b\lc\{\rc\ (\a\vs4\al\c1(x,x≥0,,-x,x<0))
    D.f(x)=eq \r(-x3),g(x)=xeq \r(-x)
    答案 AC
    3.已知集合P={x|0≤x≤4},Q={y|0≤y≤2},下列从P到Q的各对应关系f不是函数的是________.(填序号)
    ①f:x→y=eq \f(1,2)x;②f:x→y=eq \f(1,3)x;③f:x→y=eq \f(2,3)x;④f:x→y=eq \r(x).
    答案 ③
    解析 ③中,f:x→y=eq \f(2,3)x,x∈[0,4]时,y=eq \f(2,3)x∈eq \b\lc\[\rc\](\a\vs4\al\c1(0,\f(8,3)))⊈Q,故不满足函数的定义.
    思维升华 (1)函数的定义要求第一个非空数集A中的任何一个元素在第二个非空数集B中有且只有一个元素与之对应,即可以“多对一”,不能“一对多”,而B中有可能存在与A中元素不对应的元素.
    (2)构成函数的三要素中,定义域和对应关系相同,则值域一定相同.
    题型二 求函数的解析式
    例1 求下列函数的解析式:
    (1)已知f(1-sin x)=cs2x,求f(x)的解析式;
    (2)已知f eq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(1,x)))=x2+eq \f(1,x2),求f(x)的解析式;
    (3)已知f(x)是一次函数且3f(x+1)-2f(x-1)=2x+17,求f(x)的解析式;
    (4)已知f(x)满足2f(x)+f(-x)=3x,求f(x)的解析式.
    解 (1)(换元法)设1-sin x=t,t∈[0,2],
    则sin x=1-t,∵f(1-sin x)=cs2x=1-sin2x,
    ∴f(t)=1-(1-t)2=2t-t2,t∈[0,2].
    即f(x)=2x-x2,x∈[0,2].
    (2)(配凑法)∵f eq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(1,x)))=x2+eq \f(1,x2)=eq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(1,x)))2-2,
    ∴f(x)=x2-2,x∈(-∞,-2]∪[2,+∞).
    (3)(待定系数法)∵f(x)是一次函数,
    可设f(x)=ax+b(a≠0),
    ∴3[a(x+1)+b]-2[a(x-1)+b]=2x+17.
    即ax+(5a+b)=2x+17,
    ∴eq \b\lc\{\rc\ (\a\vs4\al\c1(a=2,,5a+b=17,))解得eq \b\lc\{\rc\ (\a\vs4\al\c1(a=2,,b=7.))
    ∴f(x)的解析式是f(x)=2x+7.
    (4)(方程组法)∵2f(x)+f(-x)=3x,①
    ∴将x用-x替换,得2f(-x)+f(x)=-3x,②
    由①②解得f(x)=3x.
    思维升华 函数解析式的求法
    (1)配凑法:由已知条件f(g(x))=F(x),可将F(x)改写成关于g(x)的表达式,然后以x替代g(x),便得f(x)的表达式.
    (2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法.
    (3)换元法:已知复合函数f(g(x))的解析式,可用换元法,此时要注意新元的取值范围.
    (4)方程思想:已知关于f(x)与f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,x)))或f(-x)等的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f(x).
    跟踪训练1 (1)若f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,x)))=eq \f(x,1-x),则f(x)=________.
    答案 eq \f(1,x-1)(x≠0且x≠1)
    解析 f(x)=eq \f(\f(1,x),1-\f(1,x))=eq \f(1,x-1)(x≠0且x≠1).
    (2)已知y=f(x)是二次函数,若方程f(x)=0有两个相等实根,且f′(x)=2x+2,则f(x)=________.
    答案 x2+2x+1
    解析 设f(x)=ax2+bx+c(a≠0),
    则f′(x)=2ax+b,
    ∴2ax+b=2x+2,则a=1,b=2.
    ∴f(x)=x2+2x+c,又f(x)=0,即x2+2x+c=0有两个相等实根.
    ∴Δ=4-4c=0,则c=1.故f(x)=x2+2x+1.
    (3)已知f(x)满足f(x)-2f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,x)))=2x,则f(x)=________.
    答案 -eq \f(2x,3)-eq \f(4,3x)
    解析 ∵f(x)-2f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,x)))=2x,①
    以eq \f(1,x)代替①中的x,得f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,x)))-2f(x)=eq \f(2,x),②
    ①+②×2得-3f(x)=2x+eq \f(4,x),
    ∴f(x)=-eq \f(2x,3)-eq \f(4,3x).
    题型三 分段函数
    命题点1 求分段函数的函数值
    例2 已知f(x)=eq \b\lc\{\rc\ (\a\vs4\al\c1(cs πx,x≤1,,fx-1+1,x>1,))则f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(4,3)))+f eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(4,3)))的值为( )
    A.eq \f(1,2) B.-eq \f(1,2) C.-1 D.1
    答案 D
    解析 f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(4,3)))=f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(4,3)-1))+1=f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)))+1=cs eq \f(π,3)+1=eq \f(3,2),
    f eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(4,3)))=cseq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(4π,3)))=cs eq \f(2π,3)=-eq \f(1,2),
    ∴f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(4,3)))+f eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(4,3)))=eq \f(3,2)-eq \f(1,2)=1.
    命题点2 分段函数与方程、不等式问题
    例3 (1)(2021·长春模拟)已知函数f(x)=eq \b\lc\{\rc\ (\a\vs4\al\c1(2x,x>0,,x+1,x≤0.))若f(a)+f(1)=0,则实数a的值等于( )
    A.-3 B.-1 C.1 D.3
    答案 A
    解析 ∵f(1)=21=2,∴f(a)+2=0,∴f(a)=-2,
    当a≤0时,f(a)=a+1=-2,∴a=-3,
    当a>0时,f(a)=2a=-2,方程无解,
    综上有a=-3.
    (2)已知函数f(x)=eq \b\lc\{\rc\ (\a\vs4\al\c1(lg2x,x≥1,,\f(1,1-x),x<1,))则不等式f(x)≤1的解集为( )
    A.(-∞,2] B.(-∞,0]∪(1,2]
    C.[0,2] D.(-∞,0]∪[1,2]
    答案 D
    解析 ∵当x≥1时,lg2x≤1,∴1≤x≤2.
    当x<1时,eq \f(1,1-x)≤1,解得x≤0,
    ∴f(x)≤1的解集为(-∞,0]∪[1,2].
    思维升华 (1)分段函数的求值问题的解题思路
    ①求函数值:当出现f(f(a))的形式时,应从内到外依次求值.
    ②求自变量的值:先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验.
    (2)分段函数与方程、不等式问题的求解思路
    依据不同范围的不同段分类讨论求解,最后将讨论结果并起来.
    跟踪训练2 (1)(2021·河北冀州一中模拟)设f(x)=eq \b\lc\{\rc\ (\a\vs4\al\c1(x+\f(2,x)-3,x≥1,,x2+1,x<1.))则f(f(-1))=________,f(x)的最小值是________.
    答案 0 2eq \r(2)-3
    解析 ∵f(-1)=2,
    ∴f(f(-1))=f(2)=2+eq \f(2,2)-3=0,
    当x≥1时,f(x)=x+eq \f(2,x)-3≥2eq \r(2)-3,
    当且仅当x=eq \r(2)时取等号,f(x)min=2eq \r(2)-3,
    当x<1时,f(x)=x2+1≥1,x=0时取等号,
    ∴f(x)min=1,
    综上有f(x)的最小值为2eq \r(2)-3.
    (2)设函数f(x)=eq \b\lc\{\rc\ (\a\vs4\al\c1(x+1,x≤0,,2x,x>0,))则满足f(x)+f eq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(1,2)))>1的x的取值范围是________.
    答案 eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,4),+∞))
    解析 当x>eq \f(1,2)时,2x+>1恒成立,∴x>eq \f(1,2),
    当01,
    即2x+x>eq \f(1,2)恒成立,
    ∴0当x≤0时,x+1+x-eq \f(1,2)+1>1,解得-eq \f(1,4)综上有x的取值范围是eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,4),+∞)).
    课时精练
    1.下列所给图象是函数图象的个数为( )
    A.1 B.2 C.3 D.4
    答案 B
    解析 图象①关于x轴对称,x>0时,每一个x对应2个y,图象②中x0对应2个y,所以①②均不是函数图象;图象③④是函数图象.
    2.已知函数f(x)=eq \b\lc\{\rc\ (\a\vs4\al\c1(2x+1,x≤0,,1-lg2x,x>0,))则f(f(8))等于( )
    A.-1 B.-eq \f(1,2) C.eq \f(1,2) D.2
    答案 C
    解析 ∵f(8)=1-lg28=1-3=-2,
    ∴f(f(8))=f(-2)=2-2+1=eq \f(1,2).
    3.设函数f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1-x,1+x)))=x,则f(x)的表达式为( )
    A.eq \f(1+x,1-x)(x≠-1) B.eq \f(1+x,x-1)(x≠-1)
    C.eq \f(1-x,1+x)(x≠-1) D.eq \f(2x,x+1)(x≠-1)
    答案 C
    解析 令t=eq \f(1-x,1+x),则x=eq \f(1-t,1+t),
    ∴f(t)=eq \f(1-t,1+t),
    即f(x)=eq \f(1-x,1+x)(x≠-1).
    4.如图,△AOD是一直角边长为1的等腰直角三角形,平面图形OBD是四分之一圆的扇形,点P在线段AB上,PQ⊥AB,且PQ交AD或交弧DB于点Q,设AP=x(0答案 A
    解析 观察可知阴影部分的面积y的变化情况为:(1)当05.(多选)设函数f(x)=eq \b\lc\{\rc\ (\a\vs4\al\c1(2x,x≤0,,|lg2x|,x>0,))则使f(a)=eq \f(1,2)的a的值为( )
    A.-1 B.1 C.eq \f(\r(2),2) D.eq \r(2)
    答案 ACD
    解析 由题意知,若a≤0,则2a=eq \f(1,2),解得a=-1;
    若a>0,则|lg2a|=eq \f(1,2),解得a=或a=.
    即a=eq \r(2)或a=eq \f(\r(2),2).故选ACD.
    6.(多选)具有性质:f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,x)))=-f(x)的函数,我们称为满足“倒负”变换的函数,下列函数满足“倒负”变换的函数的是( )
    A.y=x-eq \f(1,x) B.y=lneq \f(1-x,1+x)
    C. D.f(x)=eq \b\lc\{\rc\ (\a\vs4\al\c1(x,01))
    答案 AD
    解析 对于A,f(x)=x-eq \f(1,x),f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,x)))=eq \f(1,x)-x=-f(x),满足题意;
    对于B,f(x)=lneq \f(1-x,1+x),则f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,x)))=lneq \f(x-1,x+1)≠-f(x),不满足;
    对于C,f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,x)))==ex-1,-f(x)=≠f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,x))),不满足;
    对于D,f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,x)))=eq \b\lc\{\rc\ (\a\vs4\al\c1(\f(1,x),0<\f(1,x)<1,,0,\f(1,x)=1,,-x,\f(1,x)>1,))
    即f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,x)))=eq \b\lc\{\rc\ (\a\vs4\al\c1(\f(1,x),x>1,,0,x=1,,-x,0则f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,x)))=-f(x)满足“倒负”变换,故选AD.
    7.已知f(x5)=lg x,则f(2)=________.
    答案 eq \f(1,5)lg 2
    解析 令x5=2,则x=,
    ∴f(2)==eq \f(1,5)lg 2.
    8.已知函数f(x)=eq \b\lc\{\rc\ (\a\vs4\al\c1(x+b,x<1,,2x-1,x≥1,))若f(f(-1))=3,则b=______.
    答案 3
    解析 ∵f(-1)=b-1,
    ∴f(b-1)=3,
    当b-1≥1即b≥2时,
    2b-1-1=3,解得b=3,
    当b-1<1即b<2时,b-1+b=3,解得b=2(舍),
    综上有b=3.
    9.已知函数f(x)=eq \b\lc\{\rc\ (\a\vs4\al\c1(-x2-2x+1,x<0,,2x,x≥0,))则满足f(a)>1的实数a的取值范围是________.
    答案 (-2,0)∪(0,+∞)
    解析 因为f(a)>1,
    ①eq \b\lc\{\rc\ (\a\vs4\al\c1(a≥0,,2a>1,))解得a>0,
    ②eq \b\lc\{\rc\ (\a\vs4\al\c1(a<0,,-a2-2a+1>1,))解得-2由①②知-20.
    10.已知函数f(x)满足f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,x)))+eq \f(1,x)f(-x)=2x(x≠0),则f(-2)=________,f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))=________.
    答案 eq \f(7,2) eq \f(9,4)
    解析 令x=2,可得f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))+eq \f(1,2)f(-2)=4,①
    令x=-eq \f(1,2),可得f(-2)-2f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))=-1,②
    联立①②解得f(-2)=eq \f(7,2),f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))=eq \f(9,4).
    11.已知函数f(x)的解析式为f(x)=eq \b\lc\{\rc\ (\a\vs4\al\c1(3x+5,x≤0,,x+5,01.))
    (1)求f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2))),f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,π))),f(-1)的值;
    (2)画出这个函数的图象;
    (3)求f(x)的最大值.
    解 (1)∵eq \f(3,2)>1,
    ∴f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)))=-2×eq \f(3,2)+8=5.
    ∵0∴f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,π)))=eq \f(1,π)+5=eq \f(5π+1,π).
    ∵-1<0,∴f(-1)=-3+5=2.
    (2)这个函数的图象如图.
    在函数f(x)=3x+5的图象上截取x≤0的部分,
    在函数f(x)=x+5的图象上截取0在函数f(x)=-2x+8的图象上截取x>1的部分.
    图中实线组成的图形就是函数f(x)的图象.
    (3)由函数图象可知,当x=1时,f(x)取最大值6.
    12.行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y(m)与汽车的车速x(km/h)满足下列关系:y=eq \f(x2,200)+mx+n(m,n是常数).如图是根据多次实验数据绘制的刹车距离y(m)与汽车的车速x(km/h)的关系图.
    (1)求出y关于x的函数解析式;
    (2)如果要求刹车距离不超过25.2 m,求行驶的最大速度.
    解 (1)由题意及函数图象,
    得eq \b\lc\{\rc\ (\a\vs4\al\c1(\f(402,200)+40m+n=8.4,,\f(602,200)+60m+n=18.6,))
    解得m=eq \f(1,100),n=0,
    所以y=eq \f(x2,200)+eq \f(x,100)(x≥0).
    (2)令eq \f(x2,200)+eq \f(x,100)≤25.2,
    得-72≤x≤70.
    ∵x≥0,∴0≤x≤70.
    故行驶的最大速度是70 km/h.
    13.设函数f(x)=eq \b\lc\{\rc\ (\a\vs4\al\c1(2-x,x≤0,,1,x>0,))则满足f(x+1)答案 (-∞,0)
    解析 画出f(x)的图象如图所示,
    由图知eq \b\lc\{\rc\ (\a\vs4\al\c1(x+1>2x,,2x<0,))
    解得x<0,故x的取值范围是(-∞,0).
    14.已知函数f(x)=eq \b\lc\{\rc\ (\a\vs4\al\c1(x2+x,x≥0,,-3x,x<0,))若a[f(a)-f(-a)]>0,则实数a的取值范围为________.
    答案 (-∞,-2)∪(2,+∞)
    解析 当a=0时,显然不成立.
    当a>0时,不等式a[ f(a)-f(-a)]>0等价于a2-2a>0,解得a>2.
    当a<0时,不等式a[ f(a)-f(-a)]>0等价于-a2-2a<0,解得a<-2.
    综上所述,实数a的取值范围为(-∞,-2)∪(2,+∞).
    15.设f(x)是定义在R上的函数,且f(x+2)=eq \r(2)f(x),f(x)=eq \b\lc\{\rc\ (\a\vs4\al\c1(2x+a,-1答案 (eq \r(2)e,+∞)
    解析 因为f(x+2)=eq \r(2)f(x),
    所以f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(9,2)))=f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)+4))=(eq \r(2))2f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))=2eb,f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)))=f eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,2)+2))=eq \r(2)f eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,2)))=eq \r(2)eq \b\lc\[\rc\](\a\vs4\al\c1(2×\b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,2)))+a))=eq \r(2)(a-1),
    因为f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(9,2)))=f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2))),
    所以eq \r(2)(a-1)=2eb,
    所以a=eq \r(2)eb+1,
    因为b为正实数,
    所以eq \f(a,b)=eq \f(\r(2)eb+1,b)=eq \r(2)e+eq \f(1,b)∈(eq \r(2)e,+∞),
    故eq \f(a,b)的取值范围为(eq \r(2)e,+∞).
    16.已知函数f(x)=eq \f(x2,1+x2).
    (1)求f(2)与f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2))),f(3)与f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)));
    (2)由(1)中求得的结果,你能发现f(x)与f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,x)))有什么关系?证明你的发现;
    (3)求f(2)+f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))+f(3)+f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)))+…+f(2 021)+f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2 021)))的值.
    解 (1)由f(x)=eq \f(x2,1+x2)=1-eq \f(1,x2+1),
    所以f(2)=1-eq \f(1,22+1)=eq \f(4,5),f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))=1-eq \f(1,\f(1,4)+1)=eq \f(1,5).
    f(3)=1-eq \f(1,32+1)=eq \f(9,10),f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)))=1-eq \f(1,\f(1,9)+1)=eq \f(1,10).
    (2)由(1)中求得的结果发现f(x)+f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,x)))=1.
    证明如下:f(x)+f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,x)))=eq \f(x2,1+x2)+eq \f(\f(1,x2),1+\f(1,x2))=eq \f(x2,1+x2)+eq \f(1,x2+1)=1.
    (3)由(2)知f(x)+f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,x)))=1,
    ∴f(2)+f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))=1,f(3)+f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)))=1,
    f(4)+f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,4)))=1,…,f(2 021)+f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2 021)))=1.
    ∴f(2)+f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))+f(3)+f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)))+…+f(2 021)+f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2 021)))=2 020.
    相关试卷

    2024年数学高考大一轮复习第二章 §2.1 函数的概念及其表示: 这是一份2024年数学高考大一轮复习第二章 §2.1 函数的概念及其表示,共3页。试卷主要包含了已知f=lg x,则f的值为等内容,欢迎下载使用。

    2024年数学高考大一轮复习第二章 §2.1 函数的概念及其表示: 这是一份2024年数学高考大一轮复习第二章 §2.1 函数的概念及其表示,共4页。试卷主要包含了1 函数的概念及其表示,了解函数的含义等内容,欢迎下载使用。

    2024年数学高考大一轮复习第二章 §2.1 函数的概念及其表示(附答单独案解析): 这是一份2024年数学高考大一轮复习第二章 §2.1 函数的概念及其表示(附答单独案解析),共4页。试卷主要包含了1 函数的概念及其表示,了解函数的含义等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2022高考数学一轮复习 第二章 §2.1 第1课时 函数的概念及其表示 试卷
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map