终身会员
搜索
    上传资料 赚现金

    2022高考数学一轮复习 第四章 §4.3 第1课时 两角和与差的正弦、余弦和正切公式 试卷

    立即下载
    加入资料篮
    2022高考数学一轮复习  第四章 §4.3 第1课时 两角和与差的正弦、余弦和正切公式第1页
    2022高考数学一轮复习  第四章 §4.3 第1课时 两角和与差的正弦、余弦和正切公式第2页
    2022高考数学一轮复习  第四章 §4.3 第1课时 两角和与差的正弦、余弦和正切公式第3页
    还剩10页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022高考数学一轮复习 第四章 §4.3 第1课时 两角和与差的正弦、余弦和正切公式

    展开

    这是一份2022高考数学一轮复习 第四章 §4.3 第1课时 两角和与差的正弦、余弦和正切公式,共13页。
    第1课时 两角和与差的正弦、余弦和正切公式
    两角和与差的余弦、正弦、正切公式
    (1)公式C(α-β):cs(α-β)=cs αcs β+sin αsin β;
    (2)公式C(α+β):cs(α+β)=cs αcs β-sin αsin β;
    (3)公式S(α-β):sin(α-β)=sin αcs β-cs αsin β;
    (4)公式S(α+β):sin(α+β)=sin αcs β+cs αsin β;
    (5)公式T(α-β):tan(α-β)=eq \f(tan α-tan β,1+tan αtan β);
    (6)公式T(α+β):tan(α+β)=eq \f(tan α+tan β,1-tan αtan β).
    微思考
    1.诱导公式与两角和差的三角函数公式有何关系?
    提示 诱导公式可以看成和差公式中β=k·eq \f(π,2)(k∈Z)时的特殊情形.
    2.两角和与差的公式的常用变形有哪些?
    提示 (1)sin αsin β+cs(α+β)=cs αcs β.
    (2)cs αsin β+sin(α-β)=sin αcs β.
    (3)tan α±tan β=tan(α±β)(1∓tan αtan β).
    题组一 思考辨析
    1.判断下列结论是否正确(请在括号中打“√”或“×”)
    (1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( √ )
    (2)在锐角△ABC中,sin Asin B和cs Acs B大小不确定.( × )
    (3)公式tan(α+β)=eq \f(tan α+tan β,1-tan αtan β)可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( × )
    (4)eq \r(3)sin α+cs α=2sineq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,3))).( × )
    题组二 教材改编
    2.若cs α=-eq \f(4,5),α是第三象限角,则sineq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,4)))等于( )
    A.-eq \f(\r(2),10) B.eq \f(\r(2),10) C.-eq \f(7\r(2),10) D.eq \f(7\r(2),10)
    答案 C
    解析 ∵α是第三象限角,∴sin α=-eq \r(1-cs2α)=-eq \f(3,5),
    ∴sineq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,4)))=sin αcs eq \f(π,4)+cs αsin eq \f(π,4)=-eq \f(3,5)×eq \f(\r(2),2)+eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(4,5)))×eq \f(\r(2),2)=-eq \f(7\r(2),10).
    3.cs 17°cs 77°+cs 73°cs 13°= .
    答案 eq \f(1,2)
    解析 cs 17°cs 77°+cs 73°cs 13°=cs 17°sin 13°+sin 17°cs 13°=sin(17°+13°)=sin 30°=eq \f(1,2).
    4.tan 10°+tan 50°+eq \r(3)tan 10°tan 50°= .
    答案 eq \r(3)
    解析 ∵tan 60°=tan(10°+50°)=eq \f(tan 10°+tan 50°,1-tan 10°tan 50°),
    ∴tan 10°+tan 50°=tan 60°(1-tan 10°tan 50°)
    =eq \r(3)-eq \r(3)tan 10°tan 50°,
    ∴原式=eq \r(3)-eq \r(3)tan 10°tan 50°+eq \r(3)tan 10°tan 50°=eq \r(3).
    题组三 易错自纠
    5.计算:eq \f(1+tan 15°,1-tan 15°)= .
    答案 eq \r(3)
    解析 eq \f(1+tan 15°,1-tan 15°)=eq \f(tan 45°+tan 15°,1-tan 45°tan 15°)=tan (45°+15°)=tan 60°=eq \r(3).
    6.(多选)下面各式中,正确的是( )
    A.sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)+\f(π,3)))=sin eq \f(π,4)cs eq \f(π,3)+eq \f(\r(3),2)cs eq \f(π,4)
    B.cs eq \f(5π,12)=eq \f(\r(2),2)sin eq \f(π,3)-cs eq \f(π,4)cs eq \f(π,3)
    C.cseq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,12)))=cs eq \f(π,4)cs eq \f(π,3)+eq \f(\r(6),4)
    D.cs eq \f(π,12)=cs eq \f(π,3)-cs eq \f(π,4)
    答案 ABC
    解析 ∵sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)+\f(π,3)))=sin eq \f(π,4)cs eq \f(π,3)+cs eq \f(π,4)sin eq \f(π,3)
    =sin eq \f(π,4)cs eq \f(π,3)+eq \f(\r(3),2)cs eq \f(π,4),∴A正确;
    ∵cs eq \f(5π,12)=-cs eq \f(7π,12)=-cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,3)+\f(π,4)))
    =eq \f(\r(2),2)sin eq \f(π,3)-cs eq \f(π,4)cs eq \f(π,3),∴B正确;
    ∵cseq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,12)))=cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)-\f(π,3)))=cs eq \f(π,4)cs eq \f(π,3)+eq \f(\r(6),4),∴C正确;
    ∵cs eq \f(π,12)=cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,3)-\f(π,4)))≠cs eq \f(π,3)-cs eq \f(π,4),∴D不正确.故选ABC.
    题型一 两角和与差的三角函数公式
    例1 (1)(2020·全国Ⅲ)已知sin θ+sineq \b\lc\(\rc\)(\a\vs4\al\c1(θ+\f(π,3)))=1,则sineq \b\lc\(\rc\)(\a\vs4\al\c1(θ+\f(π,6)))等于( )
    A.eq \f(1,2) B.eq \f(\r(3),3) C.eq \f(2,3) D.eq \f(\r(2),2)
    答案 B
    解析 因为sin θ+sineq \b\lc\(\rc\)(\a\vs4\al\c1(θ+\f(π,3)))
    =sineq \b\lc\(\rc\)(\a\vs4\al\c1(θ+\f(π,6)-\f(π,6)))+sineq \b\lc\(\rc\)(\a\vs4\al\c1(θ+\f(π,6)+\f(π,6)))
    =sineq \b\lc\(\rc\)(\a\vs4\al\c1(θ+\f(π,6)))cs eq \f(π,6)-cseq \b\lc\(\rc\)(\a\vs4\al\c1(θ+\f(π,6)))sin eq \f(π,6)+sineq \b\lc\(\rc\)(\a\vs4\al\c1(θ+\f(π,6)))cs eq \f(π,6)+cseq \b\lc\(\rc\)(\a\vs4\al\c1(θ+\f(π,6)))sin eq \f(π,6)
    =2sineq \b\lc\(\rc\)(\a\vs4\al\c1(θ+\f(π,6)))cs eq \f(π,6)
    =eq \r(3)sineq \b\lc\(\rc\)(\a\vs4\al\c1(θ+\f(π,6)))=1.
    所以sineq \b\lc\(\rc\)(\a\vs4\al\c1(θ+\f(π,6)))=eq \f(\r(3),3).
    (2)已知sin α=eq \f(3,5),α∈eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2),π)),tan(π-β)=eq \f(1,2),则tan(α-β)的值为( )
    A.-eq \f(2,11) B.eq \f(2,11) C.eq \f(11,2) D.-eq \f(11,2)
    答案 A
    解析 ∵α∈eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2),π)),∴cs α=-eq \f(4,5),tan α=-eq \f(3,4),
    又tan(π-β)=eq \f(1,2),∴tan β=-eq \f(1,2),
    ∴tan(α-β)=eq \f(tan α-tan β,1+tan α·tan β)=eq \f(-\f(3,4)+\f(1,2),1+\b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,2)))×\b\lc\(\rc\)(\a\vs4\al\c1(-\f(3,4))))=-eq \f(2,11).
    思维升华 两角和与差的三角函数公式可看作是诱导公式的推广,可用α,β的三角函数表示α±β的三角函数,在使用两角和与差的三角函数公式时,特别要注意角与角之间的关系,完成统一角和角与角转换的目的.
    跟踪训练1 (1)若sin(2α-β)=eq \f(1,6),sin(2α+β)=eq \f(1,2),则sin 2αcs β等于( )
    A.eq \f(2,3) B.eq \f(1,3) C.eq \f(1,6) D.eq \f(1,12)
    答案 B
    解析 由sin(2α-β)=eq \f(1,6),sin(2α+β)=eq \f(1,2),
    可得sin 2αcs β-cs 2αsin β=eq \f(1,6),①
    sin 2αcs β+cs 2αsin β=eq \f(1,2),②
    由①+②得2sin 2αcs β=eq \f(2,3),
    所以sin 2αcs β=eq \f(1,3).故选B.
    (2)已知cseq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,6)))=eq \r(3)cs α,tan β=eq \f(\r(3),3),则tan(α+β)= .
    答案 -eq \f(\r(3),3)
    解析 因为cseq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,6)))=eq \f(\r(3),2)cs α-eq \f(1,2)sin α=eq \r(3)cs α,所以-sin α=eq \r(3)cs α,故tan α=-eq \r(3),所以tan(α+β)=eq \f(tan α+tan β,1-tan αtan β)=eq \f(-\r(3)+\f(\r(3),3),1+\r(3)×\f(\r(3),3))=eq \f(-\f(2\r(3),3),2)=-eq \f(\r(3),3).
    题型二 两角和与差的三角函数公式
    的逆用与变形
    例2 (1)若α+β=-eq \f(3π,4),则(1+tan α)(1+tan β)= .
    答案 2
    解析 taneq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(3π,4)))=tan(α+β)=eq \f(tan α+tan β,1-tan αtan β)=1,所以1-tan αtan β=tan α+tan β,所以1+tan α+tan β+tan αtan β=2,即(1+tan α)·(1+tan β)=2.
    (2)(2018·全国Ⅱ)已知sin α+cs β=1,cs α+sin β=0,则sin(α+β)= .
    答案 -eq \f(1,2)
    解析 ∵sin α+cs β=1,①
    cs α+sin β=0,②
    ∴①2+②2得1+2(sin αcs β+cs αsin β)+1=1,
    ∴sin αcs β+cs αsin β=-eq \f(1,2),
    ∴sin(α+β)=-eq \f(1,2).
    思维升华 运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形.公式的逆用和变形应用更能开拓思路,增强从正向思维向逆向思维转化的能力.
    跟踪训练2 (1)已知α∈eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,2),\f(π,2))),tan α=sin 76°cs 46°-cs 76°sin 46°,则sin α等于( )
    A.eq \f(\r(5),5) B.-eq \f(\r(5),5) C.eq \f(2\r(5),5) D.-eq \f(2\r(5),5)
    答案 A
    解析 由tan α=sin 76°cs 46°-cs 76°sin 46°=sin(76°-46°)=sin 30°=eq \f(1,2),
    ∵α∈eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,2),\f(π,2))),
    ∴α∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2))),
    联立eq \b\lc\{\rc\ (\a\vs4\al\c1(\f(sin α,cs α)=\f(1,2),,sin2α+cs2α=1,))
    解得sin α=eq \f(\r(5),5).
    (2)(1+tan 20°)(1+tan 21°)(1+tan 24°)(1+tan 25°)= .
    答案 4
    解析 (1+tan 20°)(1+tan 25°)=1+tan 20°+tan 25°+tan 20°tan 25°=1+tan(20°+25°)(1-tan 20°tan 25°)+tan 20°tan 25°=2,同理可得(1+tan 21°)(1+tan 24°)=2,所以原式=4.
    题型三 角的变换问题
    例3 (1)已知sin α=eq \f(2\r(5),5),sin(β-α)=-eq \f(\r(10),10),α,β均为锐角,则β等于( )
    A.eq \f(5π,12) B.eq \f(π,3) C.eq \f(π,4) D.eq \f(π,6)
    答案 C
    解析 因为sin α=eq \f(2\r(5),5),sin(β-α)=-eq \f(\r(10),10),且α,β均为锐角,所以cs α=eq \f(\r(5),5),cs(β-α)=eq \f(3\r(10),10),所以sin β=sin[α+(β-α)]=sin α·cs(β-α)+cs αsin(β-α)=eq \f(2\r(5),5)×eq \f(3\r(10),10)+eq \f(\r(5),5)×eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(\r(10),10)))=eq \f(25\r(2),50)=eq \f(\r(2),2),所以β=eq \f(π,4).故选C.
    (2)(2020·黑龙江大庆实验中学训练)已知α,β∈eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3π,4),π)),sin(α+β)=-eq \f(3,5),sineq \b\lc\(\rc\)(\a\vs4\al\c1(β-\f(π,4)))=eq \f(24,25),则cseq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,4)))= .
    答案 -eq \f(4,5)
    解析 由题意知,α+β∈eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3π,2),2π)),sin(α+β)=-eq \f(3,5)

    相关试卷

    2024年数学高考大一轮复习第四章 §4.3 两角和与差的正弦、余弦和正切公式:

    这是一份2024年数学高考大一轮复习第四章 §4.3 两角和与差的正弦、余弦和正切公式,共3页。试卷主要包含了化简等内容,欢迎下载使用。

    2024年数学高考大一轮复习第四章 §4.3 两角和与差的正弦、余弦和正切公式:

    这是一份2024年数学高考大一轮复习第四章 §4.3 两角和与差的正弦、余弦和正切公式,共3页。试卷主要包含了会推导两角差的余弦公式等内容,欢迎下载使用。

    2024年数学高考大一轮复习第四章 §4.3 两角和与差的正弦、余弦和正切公式(附答单独案解析):

    这是一份2024年数学高考大一轮复习第四章 §4.3 两角和与差的正弦、余弦和正切公式(附答单独案解析),共3页。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map