解答题压轴题训练(四)(原卷版)八年级数学下学期期末考试压轴题专练(人教版,尖子生专用)
展开解答题压轴题训练(四)
(时间:60分钟 总分:100) 班级 姓名 得分
解答题解题策略:(1)常见失分因素:①对题意缺乏正确的理解,应做到慢审题快做题;②公式记忆不牢,考前一定要熟悉公式、定理、性质等;③思维不严谨,不要忽视易错点;④解题步骤不规范,一定要按课本要求,否则会因不规范答题而失分,避免“对而不全”,如解概率题时,要给出适当的文字说明,不能只列几个式子或单纯的结论,表达不规范、字迹不工整等非智力因素会影响阅卷老师的“感情分”;⑤计算能力差导致失分多,会做的试题一定不能放过,不能一味求快,⑥轻易放弃试题,难题不会做时,可分解成小问题,分步解决,如最起码能将文字语言翻译成符号语言、设应用题未知数、设轨迹的动点坐标等,都能拿分。也许随着这些小步骤的罗列,还能悟出解题的灵感。
(2)何为“分段得分”:对于同一道题目,有的人理解的深,有的人理解的浅;有的人解决的多,有的人解决的少。为了区分这种情况,中考的阅卷评分办法是懂多少知识就给多少分。这种方法我们叫它“分段评分”,或者“踩点给分”——踩上知识点就得分,踩得多就多得分。与之对应的“分段得分”的基本精神是,会做的题目力求不失分,部分理解的题目力争多得分。对于会做的题目,要解决“会而不对,对而不全”这个老大难问题。有的考生拿到题目,明明会做,但最终答案却是错的——会而不对。有的考生答案虽然对,但中间有逻辑缺陷或概念错误,或缺少关键步骤——对而不全。因此,会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被“分段扣分”。经验表明,对于考生会做的题目,阅卷老师则更注意找其中的合理成分,分段给点分,所以“做不出来的题目得一二分易,做得出来的题目得满分难”。
对绝大多数考生来说,更为重要的是如何从拿不下来的题目中分段得点分。我们说,有什么样的解题策略,就有什么样的得分策略。把你解题的真实过程原原本本写出来,就是“分段得分”的全部秘密。
①缺步解答:如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败。特别是那些解题层次明显的题目,或者是已经程序化了的方法,每一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫“大题拿小分”。
②跳步答题:解题过程卡在某一过渡环节上是常见的。这时,我们可以先承认中间结论,往后推,看能否得到结论。如果不能,说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”。由于考试时间的限制,“卡壳处”的攻克如果来不及了,就可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底。也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面。若题目有两问,第一问想不出来,可把第一问作为“已知”,先做第二问,这也是跳步解答。
③退步解答:“以退求进”是一个重要的解题策略。如果你不能解决所提出的问题,那么,你可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从较强的结论退到较弱的结论。总之,退到一个你能够解决的问题。为了不产生“以偏概全”的误解,应开门见山写上“本题分几种情况”。这样,还会为寻找正确的、一般性的解法提供有意义的启发。
④辅助解答:一道题目的完整解答,既有主要的实质性的步骤,也有次要的辅助性的步骤。实质性的步骤未找到之前,找辅助性的步骤是明智之举。如:准确作图,把题目中的条件翻译成数学表达式,设应用题的未知数等。答卷中要做到稳扎稳打,字字有据,步步准确,尽量一次成功,提高成功率。试题做完后要认真做好解后检查,看是否有空题,答卷是否准确,所写字母与题中图形上的是否一致,格式是否规范,尤其是要审查字母、符号是否抄错,在确信万无一失后方可交卷。
一、解答题
1.甲、乙两车分别从,两地同时出发,甲车匀速前往地,到达地后以另一速度返回地;乙车匀速前往地.甲、乙两车距地的路程(千米)与行驶时间(小时)的关系如图所示.
(1)求甲车到达所用的时间;
(2)求乙车距地的路程(千米)与时间(小时)的函数表达式;
(3)求乙车到达地时,甲车与地之间的距离.
2.若b=+-a+10.
(1)求ab及a+b的值;
(2)若a、b满足x,试求x的值.
3.如图,在中,,,动点从点C出发,按的路径运动,且速度为,设运动时间为.
(1)求的面积;
(2)求边上的高的长;
(3)当为何值时,的面积为;
(4)当点P在边上运动时,若是等腰三角形,请求出满足条件的的值.
4.已知:如图1所示将一块等腰三角板BMN放置与正方形ABCD的重合,连接AN、CM,E是AN的中点,连接BE.
(观察猜想)
(1)CM与BE的数量关系是________;CM与BE的位置关系是________;
(探究证明)
(2)如图2所示,把三角板BMN绕点B逆时针旋转,其他条件不变,线段CM与BE的关系是否仍然成立,并说明理由;
(拓展延伸)
(3)若旋转角,且,求的值.
5.(1)[问题发现]如图1,和均为等边三角形,点B、D、E在同一直线上,连接.
容易发现:的度数为__________,线段、之间的数量关系为__________;
(2)[类比探究]如图2,和均为等腰直角三角形,,点B、D、E在同一直线上,连接,试判断的度数及线段、、之间的数量关系,并说明理由;
(3)[问题解决]如图3,在平面直角坐标系中,一次函数的图像分别交x、y轴于点A、B,将一只含的直角三角尺置于直线右侧,斜边恰好与线段重合,请直接写出直角顶点C到原点O的距离.
6.先观察下列等式,再回答问题:
① =1+1=2;
②=2+ =2 ;
③=3+=3;…
(1)根据上面三个等式提供的信息,请猜想第四个等式;
(2)请按照上面各等式规律,试写出用 n(n 为正整数)表示的等式,并用所学知识证明.
7.如图1,在平面直角坐标系中,O为坐标原点.A在x轴正半轴上,B在x轴负半轴上,C在y 轴正半轴上,且BO:AO:CO=2:3:4;
(1)证明:△ABC是等腰三角形;
(2)已知=40cm2,如图2,动点M从点B出发以每秒1cm的速度沿线段BA向点A运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止.设点M运动的时间为t(秒)
①求A、B、C的坐标;
②若△OMN的边与BC平行,求t的值;
③若点D是边AC的中点,在点M运动的过程中,△MOD能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.
8.如图1,在矩形中,,动点从出发,以每秒1个单位的速度,沿射线方向移动,作关于直线的对称,设点的运动时间为.
(1)若,
①如图2,当点落在时,显然是直角三角形,求此时的值;
②是否存在异于图2的时刻,使得是直角三角形?若存在,请直接写出所有符合题意的的值?若不存在,请说明理由;
(2)当点不与点重合时,若直线与直线相交于点,且当时存在某一时刻有结论成立,试探究:对于的任意时刻,结论“”是否总是成立?请说明理由.
压轴题综合训练(二)(原卷版)八年级数学下学期期末考试压轴题专练(人教版,尖子生专用): 这是一份压轴题综合训练(二)(原卷版)八年级数学下学期期末考试压轴题专练(人教版,尖子生专用),共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
压轴题综合训练(四)(原卷版)八年级数学下学期期末考试压轴题专练(人教版,尖子生专用): 这是一份压轴题综合训练(四)(原卷版)八年级数学下学期期末考试压轴题专练(人教版,尖子生专用),共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
压轴题综合训练(一)(原卷版)八年级数学下学期期末考试压轴题专练(人教版,尖子生专用): 这是一份压轴题综合训练(一)(原卷版)八年级数学下学期期末考试压轴题专练(人教版,尖子生专用),共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。