2022高考化学一轮复习(步步高) 第六章 第30讲 原电池 化学电源课件
展开1.理解原电池的构成、工作原理及应用,正确判断原电池的两极, 能书写电极反应式和总反应方程式。2.了解常见化学电源的种类及其工作原理;了解燃料电池的应用。 体会研制新型电池的重要性。3.能够认识和书写新型化学电源的电极反应式。
考点一 原电池的工作原理及应用
考点二 常见化学电源及工作原理
微专题16 新型电源及电极反应式的书写
专项提能特训10 新型电源工作原理
1.原电池的概念及构成条件(1)定义:把 转化为 的装置。(2)原电池的形成条件①能自发进行的 。②两个金属活动性不同的电极(燃料电池的两个电极可以相同)。③形成 ,需满足三个条件:a.存在电解质;b.两电极直接或间接接触;c.两电极插入电解质溶液或熔融电解质中。
2.工作原理(以锌铜原电池为例)
Zn-2e-===Zn2+
Cu2++2e-===Cu
4.原电池的应用(1)设计制作化学电源
(2)比较金属的活动性强弱:原电池中,负极一般是活动性 的金属,正极一般是活动性较弱的金属(或非金属)。(3)加快化学反应速率:氧化还原反应形成原电池时,反应速率加快。(4)用于金属的防护:将需要保护的金属制品作原电池的 而受到保护。
(1)NaOH溶液与稀硫酸的反应是自发进行的放热反应,此反应可以设计成原电池( )错因: 。(2)Mg—Al形成的原电池,Mg一定作负极( )错因: 。(3)其他条件均相同,带有“盐桥”的原电池比不带“盐桥”的原电池电流持续时间长( )错因: 。
该反应不是氧化还原反应,没有电子转移
若是酸性介质Mg作负极,若是碱性介质Al作负极
(4)原电池工作时,电子从负极流出经导线流入正极,然后通过溶液流回负极( )错因:________________________________________________。(5)在Cu|CuSO4|Zn原电池中,正电荷定向移动的方向就是电流的方向,所以Cu2+向负极移动( )错因:_________________________________________________________________________。
电子不进入溶液,溶液中阴阳离子定向移动形成电流
在外电路中电流由正极流向负极,而在电解质溶液中,阳离子都由负极移向正极
活泼性强的金属一定是原电池的负极吗?答案 不一定。一般在原电池反应中活泼金属作负极包含两层含义:(1)“活泼”是指相对活泼而不是绝对活泼。(2)在大部分原电池反应中,金属活泼性较强的作负极,另一电极作正极。但在某些特殊条件下例外,如:①冷的浓硝酸作电解质溶液,金属铁或铝与金属铜作电极时,铁或铝在冷的浓硝酸中钝化,金属活动性弱的铜与浓硝酸发生反应,作负极。②NaOH溶液作电解质溶液,金属镁与金属铝作电极时,因铝能与NaOH溶液反应,作负极,而金属活动性强的镁只能作正极。
题组一 原电池装置及电极的判断
1.在如图所示的8个装置中,属于原电池的是___________。
2.将相同的锌片和铜片按图示方式插入同浓度的稀硫酸中,以下叙述正确的是A.两烧杯中铜片表面均无气泡产生B.两烧杯中溶液的H+浓度都减小C.产生气泡的速率甲比乙慢D.甲中铜片是正极,乙中铜片是负极
解析 甲装置形成原电池,铜是正极,氢离子放电产生氢气,铜片表面有气泡产生;乙装置不能构成原电池,锌与稀硫酸反应产生氢气,铜不反应,A错误;两烧杯中溶液中的H+均得到电子被还原为氢气,因此氢离子浓度都减小,B正确;形成原电池时反应速率加快,则产生气泡的速率甲比乙快,C错误;金属性锌强于铜,则甲中铜片是正极,锌片是负极,乙中没有形成闭合回路,不能形成原电池,D错误。
题组二 原电池的工作原理
3.分析如图所示的四个原电池装置,其中结论正确的是A.①②中Mg作负极,③④中Fe作负极B.②中Mg作正极,电极反应式为6H2O+6e-===6OH- +3H2↑C.③中Fe作负极,电极反应式为Fe-2e-===Fe2+D.④中Cu作正极,电极反应式为2H++2e-===H2↑
解析 ②中Mg不与NaOH溶液反应,而Al能和NaOH溶液反应失去电子,故Al是负极;③中Fe在浓硝酸中钝化,Cu和浓HNO3反应失去电子作负极,A、C错;②中电池总反应为2Al+2NaOH+2H2O===2NaAlO2+3H2↑,负极反应式为2Al+8OH--6e-===+4H2O,二者相减得到正极反应式为6H2O+6e-===6OH-+3H2↑,B正确;④中Cu是正极,电极反应式为O2+2H2O+4e-===4OH-,D错。
4.(2019·北京朝阳区期末)某同学设计如下原电池,其工作原理如图所示。下列说法不正确的是A.该装置将化学能转化为电能B.负极的电极反应式是Ag+I--e-===AgIC.电池的总反应式是Ag++I-===AgID.盐桥(含KNO3的琼脂)中 从左向右移动
解析 该装置是原电池装置,将化学能转化为电能,A项正确;根据电子的移动方向,可以推断出左侧电极为负极,该电极反应式为Ag+I--e-===AgI,B项正确;该电极的总反应式是Ag++I-===AgI,C项正确;左侧电极为负极,右侧电极为正极, 带负电荷,向负极移动,所以 应该从右向左移动,D项错误。
5.某兴趣小组同学利用氧化还原反应2KMnO4+10FeSO4+8H2SO4===2MnSO4+5Fe2(SO4)3+K2SO4+8H2O设计了如下原电池,其中甲、乙两烧杯中各物质的物质的量浓度均为1 ml·L-1,盐桥中装有饱和K2SO4溶液。回答下列问题:(1)发生氧化反应的烧杯是______(填“甲”或“乙”)。(2)外电路的电流方向为从______(填“a”或“b”,下同)到_____。(3)电池工作时,盐桥中的 移向_____(填“甲”或“乙”)烧杯。(4)甲烧杯中发生的电极反应为_______________________________。
解析 根据题给氧化还原反应可知,甲烧杯中石墨作正极,发生还原反应,电极反应式为 +8H++5e-===Mn2++4H2O;乙烧杯中石墨作负极,发生氧化反应,电极反应式为Fe2+-e-===Fe3+;外电路的电流方向从正极流向负极,即从a到b;电池工作时,盐桥中的阴离子移向负极,阳离子移向正极,即 移向乙烧杯。
(1)判断电极名称的基本方法是看电极反应物的反应类型,若电极反应物失去电子,发生氧化反应则为负极,反之为正极。(2)双液铜、锌原电池(带盐桥)与单液原电池相比,最大的优点是Zn与氧化剂(Cu2+)不直接接触,仅有化学能转化为电能,避免了能量损耗,故电流稳定,放电时间长。(3)无论是原电池还是电解池,电子均不能通过电解质溶液,即电子不下水,离子不上线。
题组三 金属活泼性比较6.M、N、P、E四种金属,已知:①M+N2+===N+M2+;②M、P用导线连接放入硫酸氢钠溶液中,M表面有大量气泡逸出;③N、E用导线连接放入E的硫酸盐溶液中,电极反应为E2++2e-===E,N-2e-===N2+。则这四种金属的还原性由强到弱的顺序是A.P>M>N>E B.E>N>M>PC.P>N>M>E D.E>P>M>N
解析 由①知,金属活动性:M>N;M、P用导线连接放入硫酸氢钠溶液中,M表面有大量气泡逸出,说明M作原电池的正极,故金属活动性:P>M;N、E构成的原电池中,N作负极,故金属活动性:N>E。综合可知,A正确。
由此可判断这四种金属的活动顺序是A.a>b>c>d B.b>c>d>aC.d>a>b>c D.a>b>d>c
7.有a、b、c、d四个金属电极,有关的实验装置及部分实验现象如下:
解析 把四个实验从左到右分别编号为①②③④,则由实验①可知,a作原电池负极,b作原电池正极,金属活动性:a>b;由实验②可知,b极有气体产生,c极无变化,则活动性:b>c;由实验③可知,d极溶解,则d作原电池负极,c作正极,活动性:d>c;由实验④可知,电流从a极流向d极,则d极为原电池负极,a极为原电池正极,活动性:d>a。综上所述可知活动性:d>a>b>c。
题组四 原电池的设计8.设计原电池装置证明Fe3+的氧化性比Cu2+强。(1)写出能说明氧化性Fe3+大于Cu2+的离子方程式:_________________________。(2)若要将上述反应设计成原电池,电极反应式分别是:①负极________________。②正极____________________。
2Fe3++Cu===2Fe2+
Cu-2e-===Cu2+
2Fe3++2e-===2Fe2+
(3)在框中画出装置图,指出电极材料和电解质溶液:
9.可利用原电池装置证明反应Ag++Fe2+===Ag+Fe3+能发生。其中甲溶液是___________,操作及现象是_________________________________________________________________________________。
分别取电池工作前与工作一段时间后左侧烧杯中溶液,同时滴加KSCN溶液,后者红色加深
1.原电池电极反应式书写(1)负失氧、正得还。(2)注意溶液的酸碱性,适当在电极反应式两边添加H+、OH-、H2O等,以遵循电荷守恒和质量守恒。(3)注意电极反应产物是否与电解质溶液反应。(4)活泼金属不一定为负极,如镁、铝、氢氧化钠电池中,不活泼的铝为负极。
2.原电池电解质的选择电解质是使负极放电的物质,因此一般情况下电解质溶液[或者电解质溶液中溶解的其他物质(如溶液中溶解的氧气)]要能够与负极发生反应。3.原电池电极材料的选择原电池的电极必须能导电;负极一般情况下能够与电解质溶液反应,容易失电子,因此负极一般是活泼的金属材料;正极和负极之间只有产生电势差时,电子才能定向移动,所以正极和负极一般不用同一种材料。
1.一次电池(1)碱性锌锰干电池负极反应:__________________________;正极反应:_____________________________________;总反应:Zn+2MnO2+2H2O===2MnOOH+Zn(OH)2。
Zn+2OH--2e-===Zn(OH)2
2MnO2+2H2O+2e-===2MnOOH+2OH-
(2)锌银电池负极反应:__________________________;正极反应:Ag2O+H2O+2e-===2Ag+2OH-;总反应:_______________________________。(3)锂电池Li-SOCl2电池可用于心脏起搏器,该电池的电极材料分别为锂和碳,电解液是LiAlCl4-SOCl2,电池总反应可表示为4Li+2SOCl2===4LiCl+SO2↑+S。其中负极材料是____,电极反应式为__________________,正极反应式为_______________________________。
Zn+Ag2O+H2O===Zn(OH)2+2Ag
4Li-4e-===4Li+
2SOCl2+4e-===SO2↑+S+4Cl-
2.二次电池铅蓄电池是最常见的二次电池,负极材料是___,正极材料是_____。总反应为Pb(s)+PbO2(s)+2H2SO4(aq) 2PbSO4(s)+2H2O(l)。
===PbSO4+2H2O
PbSO4+2H2O-2e-===
特别提醒 可充电电池充电时原来的负极连接电源的负极作阴极;同理,原来的正极连接电源的正极作阳极,简记为负连负,正连正。
3.氢氧燃料电池氢氧燃料电池是目前最成熟的燃料电池,分为酸性和碱性两种。
2H2-4e-===4H+
2H2+4OH--4e-===4H2O
O2+4e-+4H+===2H2O
O2+2H2O+4e-===4OH-
(1)碱性锌锰干电池是一次电池,其中MnO2是催化剂,可使锌锰干电池的比能量高、可储存时间长( )错因:______________________________。(2)可充电电池中的放电反应和充电反应互为可逆反应( )错因:_________________________________________________________________________。(3)二次电池充电时,二次电池的阴极连接电源的负极,发生还原反应( )错因:________________________________________________________。
MnO2是正极反应物,不是催化剂
可充电电池放电时是自发的原电池反应,充电时是非自发的电解池反应,条件不同
(4)氢氧燃料电池在碱性电解质溶液中负极反应式为2H2-4e-===4H+( )错因:______________________________________________。(5)燃料电池的电极不参与反应,有很强的催化活性,起导电作用( )错因:________________________________________________________。
碱性环境下负极反应式为H2+2OH--2e-===2H2O
若燃料电池正极上发生反应的物质都是O2,当电解质不同,常见的正极反应有哪几种情况?答案 (1)酸性电解质溶液环境下正极反应式:O2+4H++4e-===2H2O;(2)碱性电解质溶液环境下正极反应式:O2+2H2O+4e-===4OH-;(3)固体电解质(高温下能传导O2-)环境下正极反应式:O2+4e-===2O2-;(4)熔融碳酸盐(如:熔融K2CO3)环境下正极反应式:O2+2CO2+4e-===
1.银锌电池是一种常见化学电源,其反应原理:Zn+Ag2O+H2O===Zn(OH)2+2Ag。其工作示意图如下。下列说法不正确的是A.Zn电极是负极B.Ag2O电极发生还原反应C.Zn电极的电极反应式:Zn-2e-+2OH-=== Zn(OH)2D.放电前后电解质溶液的pH保持不变
解析 反应中锌失去电子,Zn电极是负极,A正确;Ag2O得到电子,发生还原反应,B正确;电解质溶液显碱性,Zn电极的电极反应式:Zn-2e-+2OH-===Zn(OH)2,C正确;根据方程式可知消耗水,且产生氢氧化锌,氢氧根浓度增大,放电后电解质溶液的pH升高,D错误。
2.由我国科学家研发成功的铝锰电池是一种比能量很高的新型干电池,以氯化钠和稀氨水混合溶液为电解质,铝和二氧化锰-石墨为两极,其电池反应为Al+3MnO2+3H2O===3MnOOH+Al(OH)3。下列有关该电池放电时的说法不正确的是A.二氧化锰-石墨为电池正极B.负极反应式为Al-3e-+3NH3·H2O===Al(OH)3+3C.OH-不断由负极向正极移动D.每生成1 ml MnOOH转移1 ml电子
解析 由电池反应方程式知,铝为电池负极,铝失去电子转化为Al(OH)3,A、B正确;阴离子移向负极,C错误;由反应中锰元素价态变化知D正确。
3.锂锰电池的体积小,性能优良,是常用的一次电池。该电池的反应原理如图所示,其中电解质LiClO4溶于混合有机溶剂中,Li+通过电解质迁移进入MnO2晶格中,生成LiMnO2。回答下列问题:(1)外电路的电流方向是由____(填“a”或“b”,下同)极流向____极。
解析 结合所给装置图以及原电池反应原理可知,Li作负极,MnO2作正极,所以电子流向是a→b,电流方向则是b→a。
(2)电池的正极反应式为__________________________。
解析 根据题给信息“电解质LiClO4溶于混合有机溶剂中,Li+通过电解质迁移进入MnO2晶格中,生成LiMnO2”,所以正极的电极反应式为MnO2+e-+Li+===LiMnO2。
MnO2+e-+Li+===LiMnO2
题组二 二次电池的充放电
4.如图是铅蓄电池构造示意图,下列说法不正确的是A.铅蓄电池是二次电池,充电时电能转 化为化学能B.电池工作时,电子由Pb板通过导线流 向PbO2板C.电池工作时,负极反应为Pb-2e-+ ===PbSO4D.电池工作时,H+移向Pb板
5.镍镉(Ni-Cd)可充电电池在现代生活中有广泛应用。已知某镍镉电池的电解质溶液为KOH溶液,其充、放电反应按下式进行:Cd+2NiOOH+2H2O Cd(OH)2+2Ni(OH)2,有关该电池的说法正确的是A.充电时阳极反应:Ni(OH)2+OH--e-===NiOOH+H2OB.充电过程是化学能转化为电能的过程C.放电时负极附近溶液的碱性不变D.放电时电解质溶液中的OH-向正极移动
解析 放电时Cd的化合价升高,Cd作负极,Ni的化合价降低,NiOOH作正极,则充电时Cd(OH)2作阴极,Ni(OH)2作阳极,电极反应式为Ni(OH)2+OH--e-===NiOOH+H2O,A项正确;充电过程是电能转化为化学能的过程,B项错误;放电时负极电极反应式为Cd+2OH--2e-===Cd(OH)2,Cd电极周围OH-的浓度减小,C项错误;放电时电解质溶液中的OH-向负极移动,D项错误。
(1)充电电池是既能将化学能转化为电能(放电),又能将电能转化为化学能(充电)的一类特殊电池。需要注意的是充电、放电的反应不能理解为可逆反应。(2)充电时的电极反应与放电时的电极反应过程相反,充电时的阳极反应恰与放电时的正极反应相反,充电时的阴极反应恰与放电时的负极反应相反。(3)书写化学电源的电极反应式和总反应方程式时,关键是抓住氧化产物和还原产物的存在形式。
题组三 燃料电池6.(2019·济南质检)如图为以Pt为电极的氢氧燃料电池的工作原理示意图,稀H2SO4为电解质溶液。下列有关说法不正确的是A.a极为负极,电子由a极经外电路流向b极B.a极的电极反应式:H2-2e-===2H+C.电池工作一段时间后,装置中c(H2SO4)增大D.若将H2改为CH4,消耗等物质的量的CH4时,O2 的用量增多
解析 a极通入的H2发生氧化反应,为负极,电子由a极经外电路流向b极,以稀H2SO4为电解质溶液时,负极的H2被氧化为H+,A、B项正确;总反应为2H2+O2===2H2O,电池工作一段时间后,装置中c(H2SO4)减小,则C项错误;根据电池总反应:2H2+O2===2H2O,CH4+2O2===CO2+2H2O,可知消耗等物质的量的H2和CH4,CH4消耗O2较多,则D项正确。
7.用于驱动潜艇的液氨—液氧燃料电池示意图如下图所示,有关说法正确的是A.电极2发生氧化反应B.电池工作时,Na+向负极移动C.电流由电极1经外电路流向电极2D.电极1发生的电极反应为2NH3+6OH--6e-===N2+6H2O
1.(2020·全国卷Ⅰ,12)科学家近年发明了一种新型Zn—CO2水介质电池。电池示意图如下,电极为金属锌和选择性催化材料,放电时,温室气体CO2被转化为储氢物质甲酸等,为解决环境和能源问题提供了一种新途径。下列说法错误的是A.放电时,负极反应为Zn-2e-+4OH- ===B.放电时,1 ml CO2转化为HCOOH,转移的电子数为2 mlC.充电时,电池总反应为2 ===2Zn+O2↑+4OH-+2H2OD.充电时,正极溶液中OH-浓度升高
A项正确;放电时CO2转化为HCOOH,C元素化合价降低2,则1 ml CO2转化为HCOOH时,转移电子数为2 ml,B项正确;由装置示意图可知充电时阳极产生O2,阴极产生Zn,C项正确;充电时阳极上发生反应2H2O-4e-===4H++O2↑,OH-浓度降低,D项错误。
2.(2020·天津,11)熔融钠—硫电池性能优良,是具有应用前景的储能电池。如图中的电池反应为2Na+xS Na2Sx(x=5~3,难溶于熔融硫),下列说法错误的是 A.Na2S4的电子式为B.放电时正极反应为xS+2Na++2e-===Na2SxC.Na和Na2Sx分别为电池的负极和正极D.该电池是以Na-β-Al2O3为隔膜的二次电池
解析 A对,四硫化二钠属于离子化合物,其中硫达到8电子稳定结构,其电子式为 ;B对,根据总反应可知,放电时S在正极发生反应,电极反应为xS+2Na++2e-===Na2Sx;C错,电池正极是含碳粉的熔融硫;D对,因为该电池可以充电,所以为二次电池,其中Na-β-Al2O3是隔膜,防止熔融钠与熔融硫直接反应。
3.(2020·全国卷Ⅲ,12)一种高性能的碱性硼化钒(VB2)—空气电池如下图所示,其中在VB2电极发生反应:该电池工作时,下列说法错误的是A.负载通过0.04 ml电子时,有0.224 L (标准状况)O2参与反应B.正极区溶液的pH降低、负极区溶液的 pH升高C.电池总反应为4VB2+11O2+20OH-+6H2O===D.电流由复合碳电极经负载、VB2电极、KOH溶液回到复合碳电极
解析 根据VB2电极发生的反应VB2+16OH--11e-===+4H2O,判断得出VB2电极为负极,复合碳电极为正极,电极反应式为O2+4e-+2H2O===4OH-,所以电池总反应为4VB2+11O2+20OH-+6H2O=== ,C正确;负载通过0.04 ml电子时,有0.01 ml氧气参与反应,即标准状况下有0.224 L氧气参与反应,A正确;负极区消耗OH-,溶液的pH降低,正极区生成OH-,溶液的pH升高,B错误。
4.(2019·全国卷Ⅰ,12)利用生物燃料电池原理研究室温下氨的合成,电池工作时MV2+/MV+在电极与酶之间传递电子,示意图如图所示。下列说法错误的是A.相比现有工业合成氨,该方法条 件温和,同时还可提供电能B.阴极区,在氢化酶作用下发生反 应H2+2MV2+===2H++2MV+C.正极区,固氮酶为催化剂,N2发生还原反应生成NH3D.电池工作时质子通过交换膜由负极区向正极区移动
解析 由题图和题意知,电池总反应是3H2+N2===2NH3。该合成氨反应在常温下进行,并形成原电池产生电能,反应不需要高温、高压和催化剂,A项正确;观察题图知,左边电极发生氧化反应MV+-e-===MV2+,为负极,不是阴极,B项错误;正极区N2在固氮酶作用下发生还原反应生成NH3,C项正确;电池工作时,H+通过交换膜,由左侧(负极区)向右侧(正极区)迁移,D项正确。
5.(2019·全国卷Ⅲ,13)为提升电池循环效率和稳定性,科学家近期利用三维多孔海绵状Zn(3D-Zn)可以高效沉积ZnO的特点,设计了采用强碱性电解质的3D-Zn-NiOOH二次电池,结构如图所示。电池反应为Zn(s)+2NiOOH(s)+H2O(l) ZnO(s)+2Ni(OH)2(s)。下列说法错误的是A.三维多孔海绵状Zn具有较高的表面积, 所沉积的ZnO分散度高B.充电时阳极反应为Ni(OH)2(s)+OH-(aq)-e-===NiOOH(s)+H2O(l)C.放电时负极反应为Zn(s)+2OH-(aq)-2e-===ZnO(s)+H2O(l)D.放电过程中OH-通过隔膜从负极区移向正极区
解析 该电池采用的三维多孔海绵状Zn具有较高的表面积,可以高效沉积ZnO,且所沉积的ZnO分散度高,A正确;根据题干中总反应可知,该电池充电时,Ni(OH)2在阳极发生氧化反应生成NiOOH,其电极反应式为Ni(OH)2(s)+OH-(aq)-e-===NiOOH(s)+H2O(l),B正确;放电时Zn在负极发生氧化反应生成ZnO,电极反应式为Zn(s)+2OH-(aq)-2e-===ZnO(s)+H2O(l),C正确;电池放电过程中,OH-等阴离子通过隔膜从正极区移向负极区,D错误。
1.有关如图所示原电池的叙述不正确的是A.电子沿导线由Cu片流向Ag片B.正极的电极反应是Ag++e-===AgC.Cu片上发生氧化反应,Ag片上发生还原反应D.反应时盐桥中的阳离子移向Cu(NO3)2溶液
2.锌铜原电池装置如图所示,其中阳离子交换膜只允许阳离子和水分子通过,下列有关叙述正确的是A.铜电极上发生氧化反应B.电池工作一段时间后,甲池中c( )减小C.电池工作一段时间后,乙池溶液的总质量增加D.阴、阳离子分别通过交换膜向负极和正极移动, 保持溶液中电荷平衡
解析 A项,由锌的活泼性大于铜可知,铜电极为正极,在正极上Cu2+得电子发生还原反应生成Cu,错误;B项,由于阳离子交换膜只允许阳离子和水分子通过,故甲池中c( )不变,错误;C项,在乙池中发生反应Cu2++2e-===Cu,同时甲池中的Zn2+通过阳离子交换膜进入乙池中,由于M(Zn)>M(Cu),故乙池溶液的总质量增加,正确;D项,阳离子交换膜只允许阳离子和水分子通过,电解过程中Zn2+通过阳离子交换膜移向正极保持溶液中电荷平衡,阴离子是不能通过阳离子交换膜的,错误。
3.Mg-AgCl电池是一种以海水为电解质溶液的水激活电池。下列叙述错误的是A.负极反应式为Mg-2e-===Mg2+B.正极反应式为Ag++e-===AgC.电池放电时Cl-由正极向负极迁移D.负极会发生副反应Mg+2H2O===Mg(OH)2+H2↑
解析 根据题意,Mg-海水-AgCl电池总反应式为Mg+2AgCl===MgCl2+2Ag。A项,负极反应式为Mg-2e-===Mg2+,正确;B项,正极反应式为2AgCl+2e-===2Cl-+2Ag,错误;C项,对原电池来说,阴离子由正极移向负极,正确;D项,由于镁是活泼金属,则负极会发生副反应Mg+2H2O===Mg(OH)2+H2↑,正确。
4.锂—液态多硫电池具有能量密度高、储能成本低等优点,以熔融金属锂、熔融硫和多硫化锂[Li2Sx(2≤x≤8)]分别作两个电极的反应物,固体Al2O3陶瓷(可传导Li+)为电解质,其反应原理如图所示。下列说法错误的是A.该电池比钠—液态多硫电池的比能量高B.放电时,内电路中Li+的移动方向为从a到bC.Al2O3的作用是导电、隔离电极反应物D.充电时,外电路中通过0.2 ml电子,阳极区单质硫的质量增加3.2 g
解析 电池提供2 ml e-时,该电池对应Li2Sx质量为(14+32x)g,而钠—液态多硫电池对应质量为(46+32x)g,故该电池比能量高,A正确;由图分析知a为负极,b为正极,Li+从a移向b,B正确;Al2O3为固体电解质,能导电,同时将两极反应物隔开,C正确;当外电路中通过0.2 ml e-时,阳极区生成0.1x ml硫,故阳极区生成硫的质量为3.2x g,D错误。
5.(2020·哈师大附中、东北师大附中、辽宁省实验中学模拟)一种突破传统电池设计理念的镁-锑液态金属储能电池工作原理如图所示,该电池所用液体密度不同,在重力作用下分为三层,工作时中间层熔融盐的组成及浓度不变。该电池工作一段时间后,可由太阳能电池充电。下列说法不正确的是A.放电时,Mg(液)层的质量减小B.放电时正极反应为Mg2++2e-===MgC.该电池充电时,Mg-Sb(液)层发生还原反应D.该电池充电时,Cl-向中层和下层分界面处移动
解析 A项,放电时,负极Mg失电子生成镁离子,则Mg(液)层的质量减小,正确;B项,正极镁离子得电子生成Mg,则放电时正极反应为Mg2++2e-===Mg,正确;C项,该电池充电时,Mg-Sb(液)层为阳极,阳极发生失电子的氧化反应,错误;D项,该电池充电时,阴离子向阳极移动,即Cl-向中层和下层分界面处移动,正确。
6.(2020·合肥第一中学冲刺高考)锌溴液流电池用溴化锌溶液作电解液,并在电池间不断循环。下列有关说法正确的是A.充电时n接电源的负极,Zn2+通过 阳离子交换膜由左侧流向右侧B.放电时每转移1 ml电子,负极区溶 液质量减少65 gC.充电时阴极的电极反应式为Br2+2e-===2Br-D.若将阳离子交换膜换成阴离子交换膜,放电时正、负极也随之改变
解析 充电时n接电源的负极,Zn2+通过阳离子交换膜向阴极定向迁移,故由左侧流向右侧,A正确;放电时,负极Zn溶解生成Zn2+,Zn2+通过阳离子交换膜向正极定向迁移,故负极区溶液质量不变,B错误;充电时阴极的电极反应式为Zn2++2e-===Zn,C错误;若将阳离子交换膜换成阴离子交换膜,放电时正、负极不会改变,Zn仍是负极,D错误。
7.(1)微生物燃料电池是指在微生物的作用下将化学能转化为电能的装置。某微生物燃料电池的工作原理如图所示:①HS-在硫氧化菌作用下转化为 的电极反应式是_____________________________。
细菌存在,就会循环把有机物氧化成CO2放出电子。
②若维持该微生物电池中两种细菌的存在,则电池可以持续供电,原因是__________________________________________________________________________________。
HS-、 浓度不会发生变化,只要有两种细菌存在,就会循环把有机物氧化成CO2放出电子
解析 根据方程式,电路中每转移0.2 ml电子,生成0.1 ml Pb,即20.7 g。
(2)PbSO4热激活电池可用作火箭、导弹的工作电源。基本结构如图所示,其中作为电解质的无水LiCl-KCl混合物受热熔融后,电池即可瞬间输出电能。该电池总反应为PbSO4+2LiCl+Ca===CaCl2+Li2SO4+Pb。①放电过程中,Li+向______(填“负极”或“正极”)移动。②负极反应式为______________________。③电路中每转移0.2 ml电子,理论上生成_____g Pb。
Ca+2Cl--2e-===CaCl2
解析 a电极是通入NH3的电极,失去电子,发生氧化反应,所以该电极作负极,电极反应式是2NH3-6e-+6OH-===N2+6H2O;
(3)氨氧燃料电池具有很大的发展潜力。氨氧燃料电池工作原理如图所示。①a电极的电极反应式是_______________________________;
6OH-===N2+6H2O
新高考化学一轮复习课件 第6章 第35讲 原电池 化学电源: 这是一份新高考化学一轮复习课件 第6章 第35讲 原电池 化学电源,共60页。PPT课件主要包含了高考化学一轮复习策略,原电池化学电源,归纳整合,专项突破,真题演练明确考向,课时精练等内容,欢迎下载使用。
2022年高考化学一轮复习课件 第6章 第30讲 原电池 化学电源 (含解析): 这是一份2022年高考化学一轮复习课件 第6章 第30讲 原电池 化学电源 (含解析),共60页。PPT课件主要包含了复习目标,真题演练明确考向,课时精练巩固提高,内容索引,知识梳理·夯基础,化学能,氧化还原反应,闭合回路,电极的判断,电极材料等内容,欢迎下载使用。
(新高考)高考化学大一轮复习课件第6章第35讲原电池化学电源(含解析): 这是一份(新高考)高考化学大一轮复习课件第6章第35讲原电池化学电源(含解析),共60页。PPT课件主要包含了复习目标,化学能,氧化还原反应,闭合回路,电极材料,判断电极的方法,原电池原理的应用,工作原理,Fe-,GaN等内容,欢迎下载使用。