高考物理一轮复习 最新高中物理知识点清单(非常详细)
展开
这是一份高考物理一轮复习 最新高中物理知识点清单(非常详细),共175页。学案主要包含了质点,位移和速度,加速度,逆向思维法,相对运动法,图象法等内容,欢迎下载使用。
高中物理知识点清单
第一章 运动的描述
第一节 描述运动的基本概念
一、质点、参考系
1.质点:用来代替物体的有质量的点.它是一种理想化模型.
2.参考系:为了研究物体的运动而选定用来作为参考的物体.参考系可以任意选取.通常以地面或相对于地面不动的物体为参考系来研究物体的运动.
二、位移和速度
1.位移和路程
(1)位移:描述物体位置的变化,用从初位置指向末位置的有向线段表示,是矢量.
(2)路程是物体运动路径的长度,是标量.
2.速度
(1)平均速度:在变速运动中,物体在某段时间内的位移与发生这段位移所用时间的比值,即=,是矢量.
(2)瞬时速度:运动物体在某一时刻(或某一位置)的速度,是矢量.
3.速率和平均速率
(1)速率:瞬时速度的大小,是标量.
(2)平均速率:路程与时间的比值,不一定等于平均速度的大小.
三、加速度
1.定义式:a=;单位是m/s2.
2.物理意义:描述速度变化的快慢.
3.方向:与速度变化的方向相同.
考点一 对质点模型的理解
1.质点是一种理想化的物理模型,实际并不存在.
2.物体能否被看做质点是由所研究问题的性质决定的,并非依据物体自身大小来判断.
3.物体可被看做质点主要有三种情况:
(1)多数情况下,平动的物体可看做质点.
(2)当问题所涉及的空间位移远大于物体本身的大小时,可以看做质点.
(3)有转动但转动可以忽略时,可把物体看做质点.
考点二 平均速度和瞬时速度
1.平均速度与瞬时速度的区别
平均速度与位移和时间有关,表示物体在某段位移或某段时间内的平均快慢程度;瞬时速度与位置或时刻有关,表示物体在某一位置或某一时刻的快慢程度.
2.平均速度与瞬时速度的联系
(1)瞬时速度是运动时间Δt→0时的平均速度.
(2)对于匀速直线运动,瞬时速度与平均速度相等.
考点三 速度、速度变化量和加速度的关系
1.速度、速度变化量和加速度的比较
速度
速度变化量
加速度
物理意义
描述物体运动的快慢和方向,是状态量
描述物体速度的变化,是过程量
描述物体速度变化快慢,是状态量
定义式
v=
Δv=v-v0
a==
单位
m/s
m/s
m/s2
决定因素
由v0、a、t决定
由Δv=at知Δv由a与t决定
由决定
方向
与位移x同向,即物体运动的方向
由v-v0或a的方向决定
与Δv的方向一致,由F的方向决定,而与v0、v方向无关
2.物体加、减速的判定
(1)当a与v同向或夹角为锐角时,物体加速.
(2)当a与v垂直时,物体速度大小不变.
(3)当a与v反向或夹角为钝角时,物体减速
物理思想——用极限法求瞬时物理量
1.极限法:如果把一个复杂的物理全过程分解成几个小过程,且这些小过程的变化是单一的.那么,选取全过程的两个端点及中间的极限来进行分析,其结果必然包含了所要讨论的物理过程,从而能使求解过程简单、直观,这就是极限思想方法.
极限法只能用于在选定区间内所研究的物理量连续、单调变化(单调增大或单调减小)的情况.
2.用极限法求瞬时速度和瞬时加速度
(1)公式v=中当Δt→0时v是瞬时速度.
(2)公式a=中当Δt→0时a是瞬时加速度.
第二节 匀变速直线运动的规律及应用
一、匀变速直线运动的基本规律
1.速度与时间的关系式:v=v0+at.
2.位移与时间的关系式:x=v0t+at2.
3.位移与速度的关系式:v2-v=2ax.
二、匀变速直线运动的推论
1.平均速度公式:=v=.
2.位移差公式:Δx=x2-x1=x3-x2=…=xn-xn-1=aT2.
可以推广到xm-xn=(m-n)aT2.
3.初速度为零的匀加速直线运动比例式
(1)1T末,2T末,3T末……瞬时速度之比为:
v1∶v2∶v3∶…∶vn=1∶2∶3∶…∶n.
(2)1T内,2T内,3T内……位移之比为:
x1∶x2∶x3∶…∶xn=1∶22∶32∶…∶n2.
(3)第一个T内,第二个T内,第三个T内……位移之比为:
xⅠ∶xⅡ∶xⅢ∶…∶xn=1∶3∶5∶…∶(2n-1).
(4)通过连续相等的位移所用时间之比为:
t1∶t2∶t3∶…∶tn=1∶(-1)∶(-)∶…∶(-).
三、自由落体运动和竖直上抛运动的规律
1.自由落体运动规律
(1)速度公式:v=gt.
(2)位移公式:h=gt2.
(3)速度—位移关系式:v2=2gh.
2.竖直上抛运动规律
(1)速度公式:v=v0-gt.
(2)位移公式:h=v0t-gt2.
(3)速度—位移关系式:v2-v=-2gh.
(4)上升的最大高度:h=.
(5)上升到最大高度用时:t=.
考点一 匀变速直线运动基本公式的应用
1.速度时间公式v=v0+at、位移时间公式x=v0t+at2、位移速度公式v2-v=2ax,是匀变速直线运动的三个基本公式,是解决匀变速直线运动的基石.
2.匀变速直线运动的基本公式均是矢量式,应用时要注意各物理量的符号,一般规定初速度的方向为正方向,当v0=0时,一般以a的方向为正方向.
3.求解匀变速直线运动的一般步骤
→→→→
4.应注意的问题
①如果一个物体的运动包含几个阶段,就要分段分析,各段交接处的速度往往是联系各段的纽带.
②对于刹车类问题,当车速度为零时,停止运动,其加速度也突变为零.求解此类问题应先判断车停下所用时间,再选择合适公式求解.
③物体先做匀减速直线运动,速度减为零后又反向做匀加速直线运动,全程加速度不变,可以将全程看做匀减速直线运动,应用基本公式求解.
考点二 匀变速直线运动推论的应用
1.推论公式主要是指:①=v=,②Δx=aT2,①②式都是矢量式,在应用时要注意v0与vt、Δx与a的方向关系.
2.①式常与x=·t结合使用,而②式中T表示等时间隔,而不是运动时间.
考点三 自由落体运动和竖直上抛运动
1.自由落体运动为初速度为零、加速度为g的匀加速直线运动.
2.竖直上抛运动的重要特性
(1)对称性
①时间对称
物体上升过程中从A→C所用时间tAC和下降过程中从C→A所用时间tCA相等,同理tAB=tBA.
②速度对称
物体上升过程经过A点的速度与下降过程经过A点的速度大小相等.
(2)多解性
当物体经过抛出点上方某个位置时,可能处于上升阶段,也可能处于下降阶段,造成双解,在解决问题时要注意这个特点.
3.竖直上抛运动的研究方法
分段法
上升过程:a=-g的匀减速直线运动
下降过程:自由落体运动
全程法
将上升和下降过程统一看成是初速度v0向上,加速度g向下的匀变速直线运动,
v=v0-gt,h=v0t-gt2(向上为正)
若v>0,物体上升,若v0,物体在抛点上方,若hRx
测量值大于真实值
R测==Rg
RA=n2,为降压变压器;若n1r0时,分子力为引力,当r增大时,分子力做负功,分子势能增加.
2.当r0,碰撞后两球都向前运动.
③当m1v乙,而甲物体与乙物体不相碰的临界条件是v甲=v乙.
3.涉及弹簧的临界问题
对于由弹簧组成的系统,在物体间发生相互作用的过程中,当弹簧被压缩到最短时,弹簧两端的两个物体的速度相等.
4.涉及最大高度的临界问题
在物体滑上斜面(斜面放在光滑水平面上)的过程中,由于弹力的作用,斜面在水平方向将做加速运动.物体滑到斜面上最高点的临界条件是物体与斜面沿水平方向具有共同的速度,物体在竖直方向的分速度等于零.
5.正确把握以下两点是求解动量守恒定律中的临界问题的关键:
(1)寻找临界状态
看题设情景中是否有相互作用的两物体相距最近,避免相碰和物体开始反向运动等临界状态.
(2)挖掘临界条件
在与动量相关的临界问题中,临界条件常常表现为两物体的相对速度关系与相对位移关系,即速度相等或位移相等.
第二节 光电效应、波粒二象性
一、光电效应
1.定义:在光的照射下从物体发射出电子的现象(发射出的电子称为光电子).
2.产生条件:入射光的频率大于极限频率.
3.光电效应规律
(1)存在着饱和电流
对于一定颜色的光,入射光越强,单位时间内发射的光电子数越多.
(2)存在着遏止电压和截止频率
光电子的能量只与入射光的频率有关,而与入射光的强弱无关.当入射光的频率低于截止频率时不发生光电效应.
(3)光电效应具有瞬时性
当频率超过截止频率时,无论入射光怎样微弱,几乎在照到金属时立即产生光电流,时间不超过10-9 s.
二、光电效应方程
1.基本物理量
(1)光子的能量ε=hν,其中h=6.626×10-34 J·s(称为普朗克常量).
(2)逸出功:使电子脱离某种金属所做功的最小值.
(3)最大初动能
发生光电效应时,金属表面上的电子吸收光子后克服原子核的引力逸出时所具有动能的最大值.
2.光电效应方程:Ek=hν-W0.
三、光的波粒二象性与物质波
1.光的波粒二象性
(1)光的干涉、衍射、偏振现象证明光具有波动性.
(2)光电效应说明光具有粒子性.
(3)光既具有波动性,又具有粒子性,称为光的波粒二象性.
2.物质波
(1)概率波:光的干涉现象是大量光子的运动遵守波动规律的表现,亮条纹是光子到达概率大的地方,暗条纹是光子到达概率小的地方,因此光波又叫概率波.
(2)物质波:任何一个运动着的物体,小到微观粒子大到宏观物体都有一种波与它对应,其波长λ=,p为运动物体的动量,h为普朗克常量.
考点一 光电效应规律的理解
1.放不放光电子,看入射光的最低频率.
2.单位时间内放多少光电子,看光的强度.
3.光电子的最大初动能大小,看入射光的频率.
4.要放光电子,瞬时放.
考点二 光电效应方程及图象问题
1.爱因斯坦光电效应方程
Ek=hν-W0
hν:光电子的能量.
W0:逸出功,即从金属表面直接飞出的光电子克服正电荷引力所做的功.
Ek:光电子的最大初动能.
2.图象分析
图象名称
图线形状
由图线直接(间接)
得到的物理量
最大初动能Ek与入射光频率ν的关系图线
①极限频率:ν0
②逸出功:W0=|-E|=E
③普朗克常量:图线的斜率k=h
遏止电压Uc与入射光频率ν的关系图线
①截止(极限)频率:ν0
②遏止电压Uc:随入射光频率的增大而增大
③普朗克常量:h=ke(k为斜率,e为电子电量)
频率相同、光强不同时,光电流与电压的关系
①遏止电压:Uc
②饱和光电流:Im(电流的最大值)
③最大初动能:Ekm=eUc
频率不同、光强相同时,光电流与电压的关系
①遏止电压:Uc1、Uc2
②饱和光电流:电流最大值
③最大初动能Ek1=eUc1,Ek2=eUc2
用统计规律理解光的波粒二象性
微观粒子中的粒子性与宏观概念中的粒子性不同,通俗地讲,宏观粒子运动有确定的轨道,能预测,遵守经典物理学理论,而微观粒子运动轨道具有随机性,不能预测,也不遵守经典物理学理论;微观粒子的波动性与机械波也不相同,微观粒子波动性是指粒子到达不同位置的机会不同,遵守统计规律,所以这种波叫概率波.
第三节 原子与原子核
一、原子的核式结构
1.α粒子散射实验的结果
绝大多数α粒子穿过金箔后,基本上仍沿原来的方向前进,但少数α粒子发生了大角度偏转,极少数α粒子的偏转超过了90°,有的甚至被撞了回来,如图所示.
2.原子的核式结构
在原子中心有一个很小的核,原子全部的正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转.
二、玻尔理论
1.定态:原子只能处于一系列不连续的能量状态中,在这些能量状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量.
2.跃迁:原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两个定态的能量差决定.即hν=Em-En.(h是普朗克常量,h=6.626×10-34 J·s)
3.轨道:原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对应.原子的定态是不连续的,因此电子的可能轨道也是不连续的.
4.氢原子的能级、能级公式
(1)氢原子的能级图(如图所示)
(2)氢原子的能级和轨道半径
①氢原子的能级公式:En=E1(n=1,2,3,…),其中E1为基态能量,其数值为E1=-13.6 eV.
②氢原子的半径公式:rn=n2r1(n=1,2,3,…),其中r1为基态半径,又称玻尔半径,其数值为r1=0.53×10-10 m.
三、天然放射现象、原子核的组成
1.天然放射现象
(1)天然放射现象
元素自发地放出射线的现象,首先由贝克勒尔发现.天然放射现象的发现,说明原子核具有复杂的结构.
(2)放射性和放射性元素:物质发射某种看不见的射线的性质叫放射性.具有放射性的元素叫放射性元素.
(3)三种射线:放射性元素放射出的射线共有三种,分别是α射线、β射线、γ射线.
2.原子核
(1)原子核的组成
①原子核由质子和中子组成,质子和中子统称为核子.
②原子核的核电荷数=质子数,原子核的质量数=质子数+中子数.
(2)同位素:具有相同质子数、不同中子数的原子,在元素周期表中的位置相同,同位素具有相同的化学性质.
四、原子核的衰变和半衰期
1.原子核的衰变
(1)原子核放出α粒子或β粒子,变成另一种原子核的变化称为原子核的衰变.
(2)分类
α衰变:X→Y+He
β衰变:X→Y+e
2.半衰期
(1)定义:放射性元素的原子核有半数发生衰变所需的时间.
(2)衰变规律:N=N0t/τ、m=m0t/τ
(3)影响因素:由原子核内部因素决定,跟原子所处的物理化学状态无关.
五、核力、结合能、质量亏损、核反应
1.核力
(1)定义:原子核内部,核子间所特有的相互作用力.
(2)特点:①核力是强相互作用的一种表现;
②核力是短程力,作用范围在1.5×10-15 m之内;
③每个核子只跟它的相邻核子间才有核力作用.
2.核能
(1)结合能
核子结合为原子核时放出的能量或原子核分解为核子时吸收的能量,叫做原子核的结合能,亦称核能.
(2)比结合能
①定义:原子核的结合能与核子数之比,称做比结合能,也叫平均结合能.
②特点:不同原子核的比结合能不同,原子核的比结合能越大,表示原子核中核子结合得越牢固,原子核越稳定.
3.质能方程、质量亏损
爱因斯坦质能方程E=mc2,原子核的质量必然比组成它的核子的质量和要小Δm,这就是质量亏损.由质量亏损可求出释放的核能ΔE=Δmc2.
4.获得核能的途径:(1)重核裂变;(2)轻核聚变.
5.核反应
(1)遵守的规律:电荷数守恒、质量数守恒.
(2)反应类型:衰变、人工转变、重核裂变、轻核聚变.
考点一 氢原子能级及能级跃迁
1.原子跃迁的条件
(1)原子跃迁条件hν=Em-En只适用于光子和原子作用而使原子在各定态之间跃迁的情况.
(2)当光子能量大于或等于13.6 eV时,也可以被处于基态的氢原子吸收,使氢原子电离;当处于基态的氢原子吸收的光子能量大于13.6 eV时,氢原子电离后,电子具有一定的初动能.
(3)原子还可吸收外来实物粒子(例如自由电子)的能量而被激发.由于实物粒子的动能可全部或部分被原子吸收,所以只要入射粒子的能量大于或等于两能级的能量差值(E=Em-En),均可使原子发生能级跃迁.
2.跃迁中两个易混问题
(1)一群原子和一个原子:氢原子核外只有一个电子,这个电子在某个时刻只能处在某一个可能的轨道上,在某段时间内,由某一轨道跃迁到另一个轨道时,可能的情况只有一种,但是如果容器中盛有大量的氢原子,这些原子的核外电子跃迁时就会有各种情况出现了.
(2)直接跃迁与间接跃迁:原子从一种能量状态跃迁到另一种能量状态时.有时可能是直接跃迁,有时可能是间接跃迁.两种情况下辐射(或吸收)光子的能量是不同的.直接跃迁时辐射(或吸收)光子的能量等于间接跃迁时辐射(或吸收)的所有光子的能量和.
3.(1)能级之间跃迁时放出的光子频率是不连续的.
(2)能级之间发生跃迁时放出(吸收)光子的频率由hν=Em-En求得.若求波长可由公式c=λν求得.
(3)一个氢原子跃迁发出可能的光谱线条数最多为(n-1).
(4)一群氢原子跃迁发出可能的光谱线条数的两种求解方法:
①用数学中的组合知识求解:N=C=.
②利用能级图求解:在氢原子能级图中将氢原子跃迁的各种可能情况一一画出,然后相加.
考点二 氢原子的能量及其变化
1.原子能量:En=Ekn+Epn=,随n(r)增大而增大,其中E1=-13.6 eV.
2.电子动能:电子绕氢原子核运动时静电力提供向心力,即k=m,所以Ekn=k,随n(r)增大而减小.
3.电势能:通过库仑力做功判断电势能的增减.当n减小,即轨道半径减小时,库仑力做正功,电势能减小;反之,n增大,即轨道半径增大时,电势能增加.
考点三 原子核的衰变 半衰期
1.衰变规律及实质
(1)两种衰变的比较
衰变类型
α衰变
β衰变
衰变方程
X→Y+He
X→Y+e
衰变实质
2个质子和2个中子
结合成一个整体射出
中子转化为
质子和电子
2H+2n→He
n→H+e
衰变规律
质量数守恒、电荷数守恒
(2)γ射线:γ射线经常是伴随着α衰变或β衰变同时产生的.其实质是放射性原子核在发生α衰变或β衰变的过程中,产生的新核由于具有过多的能量(核处于激发态)而辐射出光子.
2.确定衰变次数的方法
因为β衰变对质量数无影响,先由质量数的改变确定α衰变的次数,然后再根据衰变规律确定β衰变的次数.
3.半衰期
(1)公式:N余=N原t/τ,m余=m原t/τ
(2)影响因素:放射性元素衰变的快慢是由原子核内部自身因素决定的,跟原子所处的物理状态(如温度、压强)或化学状态(如单质、化合物)无关.
考点四 核反应类型与核反应方程
1.核反应的四种类型:衰变、人工转变、裂变和聚变.
2.核反应过程一般都是不可逆的,所以核反应方程只能用单向箭头连接并表示反应方向,不能用等号连接.
3.核反应的生成物一定要以实验为基础,不能凭空只依据两个守恒规律杜撰出生成物来写核反应方程.
4.核反应遵循质量数守恒而不是质量守恒,核反应过程中反应前后的总质量一般会发生变化.
5.核反应遵循电荷数守恒.
考点五 有关核能的计算
1.应用质能方程解题的流程图
→→
(1)根据ΔE=Δmc2计算,计算时Δm的单位是“kg”,c的单位是“m/s”,ΔE的单位是“J”.
(2)根据ΔE=Δm×931.5 MeV计算.因1原子质量单位(u)相当于931.5 MeV的能量,所以计算时Δm的单位是“u”,ΔE的单位是“MeV”.
2.利用质能方程计算核能时,不能用质量数代替质量进行计算.
守恒思想在核反应中的应用
(1)在动量守恒方程中,各质量都可用质量数表示.
(2)只有利用ΔE=Δmc2时,才考虑质量亏损,在动量和能量守恒方程中,不考虑质量亏损.
(3)注意比例运算求解.
相关学案
这是一份高中物理一轮复习材料 知识点 第二章:相互作用,共77页。学案主要包含了重力,形变,力的分解,矢量和标量等内容,欢迎下载使用。
这是一份高中物理一轮复习材料 知识点 第十三章:光,共39页。学案主要包含了光的折射定律 折射率,全反射 光导纤维,光的偏振等内容,欢迎下载使用。
这是一份高中物理一轮复习材料 知识点 第十四章:热学,共62页。学案主要包含了分子动理论,温度与物体的内能,能量守恒定律等内容,欢迎下载使用。